This file has been cleaned of potential threats.

To view the reconstructed contents, please SCROLL DOWN to next page.

Magnets for charge particle beams

Sanjay Malhotra Bhabha Atomic Research Centre

1111

1111

Commemoration of 30 Years of ADITYA Tokamak, IPR, Gandhinagar

Outline of the presentation

Introduction

Accelerator beam line magnets

- Drift tube Linac (10-20 MeV) & PMQs
- Linac Magnets for PIP-II
- Magnets for Delhi Light Source
- Synchrotron beam line magnets
- Electromagnetic isotope Separation

Magnets for RF Devices

- PM magnet for miniature Klystron
- Hybrid Magnet for S-Band Klystron
- PM magnet for X-Band RBWO
- Cavity Magnet for 42GHz Gyrotron
- Pulsed Electromagnet for high frequency Gyrotron

Superconducting magnet technology

- 300mm RT Bore liquid helium cooled superconducting magnet
- 300 mm RT Bore Conduction cooled superconducting magnet
- 130 mm RT bore 4T conduction cooled magnet assembly

Roles that magnet plays

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

Application Areas

Accelerator (Linear/Cyclotron/ Synhcrotron)	Medical (MRI, NMR)	Fusion Experiments
Mass spectrometers	RF Devices (Klystron, Gyrotron, BWO)	Agriculture
	Sensors (SQUIDS/Fluxgates/ GMR/Faraday rotation)	

Contributing to an ever-expanding magnet compass

Accelerator Magnets (Focusing & Steering Magnets)

Magnets for MHD Experiments

Electromagnetic Isotope separator magnet

Synchrotron Beam Line Magnets

Focussing Lenses for Vacuum tubes

Design capabilities for end to end magnet design

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

What goes into developing a magnet...

Accelerator beam line magnets

- Drift tube Linac (10-20 MeV) & PMQs (H⁺ Beam)
- Linac Magnets for PIP-II (H⁻ Beam)
- Magnets for Delhi Light Source (e⁻ Beam)
- Synchrotron beam line magnets (e⁻ Beam)

Low Energy High Intensity Proton Accelerator

Sectional view of Drift Tube Linac

EM Field distribution in DTL

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

RF defocusing force- Incompatibility theorem

Ref: RF Linear accelerators Thomas P. Wangler

The Quadrupole configuration

The Permanent magnet Quadrupoles

- Field Gradient in the aperture α 1/r^2
- Rare Earth Permanent magnets for high air gap flu density
- Smaller diameter leads to smaller drift tubes , henc higher shunt impedance
- Absence of Power supplies / high capacity coolin systems lead to greater reliability

Magnetic Design of Permanent Magnet Quadrupoles

Tuning curves for different magnet strength

Uniformity of JG.dl

PMQ Assembly

Tuning of Permanent Magnet Quadrupoles

The DTL Engineering

- *Beam Physics* defines the accelerator structure requirement in terms of EM Field distributions
- The *RF and mechanical Engineering* address the practical realization of physics design
- Basic RF properties of the structure are resonant frequency, the RF power losses, the coupling to the RF source and the structure tuning
- Mechanical properties include the vacuum , cooling , alignment and structure integrity
- Properties to be maintained in spite of aging of components with thermal and vacuum cycling
- Sources of frequency errors in the DTL include machining tolerances of tank I.D and Drift tubes and the inaccuracies in estimating perturbations due to D.T stem and vacuum pump out slots
- Hierarchical tuning mechanism to achieve correct frequency
- Post coupled DTL structure allows for a good approximation of the physics design with readily realizable construction tolerances

Alvarez Drift Tube Linac

Developed Drift Tubes Linac cavity with assembled Drift Tubes

Drift Tubes aligned concentrically along the DTL cavity axis

Drift Tube

Permanent Magnet Quadrupole

20 MeV Alvarez DTL developed at BARC

20 MeV Alvarez DTL – RF input view

Drift Tubes located aperiodically inside DTL

LINAC magnets for PIP-II

"Magnets" shown in PIP-II Technology Map

- 49 Nos of BARC developed MEBT magnets (34 Quads + 15 H/V Dipole corrector) commissioned in PIP2IT beamline, FNAL.
- Design and engineering development of bath cooled superconducting focussing lenses. Cryogenic Qualifications @ 2.1K proves efficacy of BARC design to meet beam optics and engineering requirements.
- Design and Engineering development of LB/HB650 warm doublet (Quads and Dipole corrector).

Design and Development of Focusing lenses for MEBT

Stages of development at BARC: 1.Electromagnetic design of lenses - Quadrupole Focussing Magnets and dipole correctors

- 2. Engineering design
- 3. Development drawings
- 4. Fabrication and Geometrical inspection
- 5. Magnetic measurements (integral fields)
- 6. Quality checks and traveller
- 7. Qualification tests with H⁺ beam at 2.5 MeV

Electromagnetic Simulation

Mechanical Design

Developed Magnets

Quadrupole

SN	Parameter	Requirement	Designed for	Measured	Unit	Remarks
1.	∫ G.dl	1.44	1.44	1.44	т	Meets Req.
2.	Magnetic Centre (X axis)	Within ± 100	0	45 to -30	um	Meets Req.
3.	Magnetic Centre (Y axis)	Within ± 100	0	30 to -40	um	Meets Req.
4.	Integrated Magnetic field	<1	0.30	<0.5	%	Meets Req.
	uniformity (up to n=10)					
5.	Magnetic centre as function	50	0	<20	um	Meets Req.
	of current					
6.	Transfer function stab.	0.30	0.20	<0.5	%	Meets Req.
7.	Higher Order Multipoles	<1	0.20	<0.3	%	Meets Req.
8.	Skew Components	0.2	0.05	<0.1	%	Meets Req.

Dipole Corrector

S. No	Parameter	Specified	Achieved	Remarks
1.	Magnetic field integral	2.1 mT-m	2.4mT-m	Meets requirements
2.	Field tilt -Deviation of X and Y field from perpendicular	< 3 ⁰	Negligible	No evidence of tilt in the orthogonal field
3.	Integrated field uniformity	5%	Highly uniform	Acceptable even at 25mm radius, well beyond requirement level

Memo generated by FNAL after magnetic qualifications of pre-series magnets

To:	Dr. Shekhar Mishra
From:	Dr. Michael Tartaglia, PXIE Magnet SPM, Tech. Division Test & Instrumentation Department Head
Subject:	Qualification of PXIE MEBT Pre-series Magnets from BARC

As part of the Indian Institutions and Fermilab Collaboration, the Electromagnetic Applications Section at the Bhabha Atomic Research Centre (BARC) has delivered to Fermilab a set of pre-series magnets suitable for use in the MEBT section of the PXIE beamline. The deliverables included three F-Quadrupoles (PXQF), two Corrector Dipoles (PXD), and two "doublet" frames, used for mounting two PXQF and one PXD into one "doublet" assembly. No design changes have occurred in the PXQF magnets, and some minor changes were introduced for the PXD magnets, since the first two prototype magnets were accepted one year ago. These BARC-designed magnets were built by industry in India according to drawings provided by BARC, and came complete with travelers documenting the components, fabrication and tests.

Upon delivery the magnets were electrically inspected and measured at the Fermilab Magnet Test Facility to verify that they achieved the required magnetic performance as documented in the Technical Requirement Specifications (Teamcenter ED0003467). The results of these measurements have been reviewed by Dr. A. Shemyakin (PXIE Warm Front End Manager), C. Baffes (PXIE Warm Front End Engineer), and me. I am pleased to say that these magnets meet the required performance in terms of physical aperture and length, maximum operating current, integrated magnetic strength, field uniformity, stability of the quad magnetic center, and dipole field angle perpendicularity. These pre-series magnets are ready for integration into the PXIE beam line. Based upon the successful fabrication and test performance of these pre-series magnets it is recommended that approval be given to BARC to proceed as soon as possible with fabrication of production quantities of the PXQF, PXQD, and PXD magnets.

PXIE Beam line integration of MEBT (2 Doublets) (Feb' 2016)

January 27, 2020

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

Transport through the MEBT 1.1 line (March, 2016)

With quadrupoles and dipole correctors tuned, most of the beam goes into the Faraday Cup at the end of the beam line at the nominal current of 5 mA.

From: <a>owner-iifc@listserv.fnal.gov [mailto:owner-iifc@listserv.fnal.gov] On Behalf Of Stephen D Holmes Sent: Wednesday, March 23, 2016 4:45 PM

To: iifc <<u>iifc@fnal.gov</u>> Cc: Nigel S. Lockyer <<u>lockyer@fnal.gov</u>>

Subject: Beam through the PXIE RFQ

Dear Colleagues,

It is a pleasure to tell you that today we successfully accelerated beam through the RFQ at PXIE. Following the exit of the linac are four quadrupoles and two correction dipoles manufactured at BARC. Once the quadrupoles were energized beam transmission to the Faraday Cup downstream of the magnets approached 100%.

For those of you at Fermilab we will be congregating at the Users Center tomorrow (Thursday) at 5:00 for a little celebration.

Best Regards, Steve

MEBT Quadrupole Triplets & Doublets for PIP2-IT (IIFC)

November 21, 2019

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

Integral Magnetic Field Gradient of series Quadrupole Magnets

Magnets Commissioned in P2IT beam line at FNAL

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

SSR superconducting magnet assemblies

Cold Magnetic Qualifications

Quadrupole Magnets for LB/HB 650 PIP-II

Parameters	Required	Achieved in design	Unit
Integral magnetic field gradient (ʃG.dl)	3.0	3.0	(T/m).m
MMF	3600	3555	At
Magnetic field gradient	13.5	12.8	T/m
Aperture	52	52	mm
Good field region aperture	26	26	mm
Uniformity of JG.dz in GFR	0.100	0.007	%
Physical length	200	200	mm
Maximum transverse dimensions	600	425	mm

Parameter	Required	Achieved in design	Units
Integral Magnetic field	10	10	mT.m
Pole tip to pole tip gap	52	52	mm
Good Field region	Ø 26	Ø 26	mm
Uniformity in GFR	1	0.58	%
Maximum transverse dimensions	600	275	mm
Maximum longitudinal dimensions	180	130	mm
Power supply preference (I)	<15	9.2	А
Power supply preference (V)	<30	2.5	V

Magnetic design of Quadrupole Magnets for LB/HB650

Doublets for LB/HB 650 MHz section of PIP-II

3D Model for LB/HB650 Warm doublet

Electromagnetic Design

Developed Quadrupole & Dipole Magnet Assemblies

Magnetic Qualification bench

Magnets for Delhi Light Source (DLS) (Electron beam)

Magnet layout and specifications

Bending Magnet

SN	Parameter	Value	Unit
1.	θ	60 ± 0.5°	0
2.	R	300 ± 1	mm
3.	Pole gap	40 ± 0.1	mm
4.	B ₀	1200	G
5.	Entry and exit angle	6 ± 0.1°	0
6.	Homogeneity of B field	500	ppm
7.	Good field region	± 16 (Z) ± 40 (R)	mm

Quadrupole Magnet

SN	Parameter	Value	Unit
1.	G	11.5	T/m
2.	Aperture	34	mm
3.	GFR	23	mm
4.	Homogeneity in GFR	<0.5	%
5.	Effective length	71	mm
6.	Roll angle	<3 mrad	ppm

Magnet	Nos	
60 degree bending magnet	2	
Quadrupole magnet	7	
Dipole Corrector	5	/
	7	

Magnets for DLS

Synchrotron Beamline Magnets

Dipole Magnet for XMCD Measurements (BL-08)

Technical specification of the Electromagnet for XMCD measurements

Parameter	Values	
Central Magnetic field	2 Tesla	
Pole Air gap	25 mm	
Max Sample size Area	5 mm × 5 mm	
DSV	5 mm	
Magnetic field uniformity	100 ppm	
Magnet Shape	H Dipole	
Magnet outer dimensions Restrictions	500 mm×500 mm ×400 mm	
10 mm diameter central hole through the magnet for the X-ray beam to pass through		

Central Magnetic Field (2 Tesla)

Magnetic field uniformity (DSV: 5 mm) (Better than 100 ppm)

XMCD Magnet measurements

Simulated and measured B-Field in center of air-gap

Photograph of the Energy Dispersive EXAFS beamline along with the magnet in BL-08 at Indus-2 Synchrotron

× XMCD signa

Variable field Permanent Magnet Dipole

- To understand the magneto-structural transitions in magneto-caloric materials at room temperature, x-ray diffraction studies have to be done in the presence of magnetic field.
- These studies are done at Beamline-11 of INDUS-II at RRCAT, Indore
- 1 T tunable permanent magnet based dipole was developed. Tuning of the magnetic field was achieved using a shunt soft iron plate.

Magnetic flux being shunted by soft iron plate

Electromagnetic isotope Separation

Layout of EMIS facility

EMIS facility can be utilized to enrich other therapeutic radiopharmaceuticals

- 1 mg Lu-176 required to be produced every day
- 1 mA Lu beam required per day, assuming 8 hours operations.

% Lu-176

Magnetic Design

January 27, 2020

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

The developed Electromagnet

Pole gap region

Rotatable poles

Headers for coils heat removal

Magnetic Measurement Results

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

Magnets for RF Devices (Electron beam)

- PM magnet for miniature Klystron
- Hybrid Magnet for S-Band Klystron
- PM magnet for X-Band RBWO
- Cavity Magnet for 42GHz Gyrotron
- Pulsed Electromagnet for high frequency Gyrotron

Axial magnetic Field (High Space Charge beam)	 High Magnetic field requirement for single beam Klystrons and Gyrotrons
Rise of field	 Transition from zero axial field to full field (2 decades) over very short axial distance.
Field Uniformity	 Highly uniform field is required for beam focusing.
Cathode gun shielding (Confined Flow)	 An optimum field level of field is required for maximum beam transmission in Klystrons and Gyrotrons
Collector field requirement	 Optimum Level of field for adiabatic beam expansion in collector region
Asymmetry (RF Ports/Waveguides)	 Asymmetries in the magnet design interferes with optimum performance of the tube in output cavity region.

0.35T Permanent Magnet for Miniature High Frequency Klystron

January 27, 2020

30 years of Aditya Tokamak Sanjay Malhotra | BARC

0.35T Permanent Magnet for Miniature High Frequency Klystron

Magnetic field measurement along focusing solenoid axis

Beam transmission results

Magnet integrated with the klystron tube

RF Power Measurement (125W)

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

Hybrid Magnet Assembly for S-Band Klystron

5 MW, 2856 MHz S-Band klystron is being developed by CSIR-CEERI for 10MeV RF Linear Accelerator.

Development of Focusing lens to confine the electron beam with high spatial charge density was a major bottleneck in the Klystron development.

Hybrid Magnet Assembly for S-Band Klystron

S-band Klystron assembly

Electromagnetic design

Integration & assembly

Magnet has been integrated with S- Band Klystron Tube assembly at CSIR-CEERI & RF Trials are in progress.

Magnets for high power Backward wave Oscillators

Backward wave oscillators (BWOs) are *Cerenkov radiation based*, high power microwave sources. These find application in plasma science, electronic warfare (Active Denial System- ADS), high power radar (Nanosecond Gigawatt Radar-NaGiRa system) and electronic system susceptance and vulnerability testing.

Schematic drawing of backward wave oscillator.

Slow Wave Structures (SWSs) are an essential component of the BWO system since they guide the electromagnetic mode while concurrently matching wave velocity to the electron beam velocity.

Permanent Magnet Design For X-Band RBWO

42 GHz, 200 kW Gyrotron for Indian TOKAMAK system

RF Window DST sponsored multiinstitutional research project. **Collector Magnet** system First indigenous high power Gyrotron tube development Development of Focusing confine the lens to electron beam with high Non linear taper spatial charge density was a major bottleneck in the **Cavity Magnet** Gyrotron development. Beam tunnnel **MIG Gun GUN Magnet Coil**

Field Requirements & Simulation studies

January 27, 2020

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

Summary of test results

S No	Parameter	Measured	Designed
1	Magnetic field at cavity center	1.612T	1.611T
2	Magnetic field at MIG gun	0.1030 T	0.1036T
3	Hydraulic Pressure drop	9.5 bar @ 37 LPM	9 bar @ 36 LPM
4	Maximum temperature rise	45°C	44°C
5	Voltage across coil @ 495A	240V	235V

Measured axial field at various currents

% Error plot in simulated Vs Measured data

- Design initiated in Jan'2017; Magnet delivered to IPR in Nov,2017
- Installed and commissioned at IPR Jan' 2018
- Integrated with the Gyrotron tube on second week of February
- Beam successfully transmitted through the Gyrotron
- 125 KW of RF power extracted.

Pulsed Electromagnet for high frequency Gyrotron

3D EM Design Model

Developed magnet assembly

January 27, 2020

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

Superconducting magnet technology

- 300mm RT Bore liquid helium cooled superconducting magnet
- 300 mm RT Bore Conduction cooled superconducting magnet
- 130 mm RT bore 4T conduction cooled magnet assembly

Superconducting Magnet Technology

300mm LHe cooled SC magnet for MHD experiments

300mm cryogen free SC magnet for MHD experiments

130 mm warm bore cryogen free SC magnet for High Frequency RF device

Cold bore SC magnet for SSR Cryomodule under IIFC

Introduction to superconducting magnet technology

Conductor limited quench

Critical surface is crossed due to an increase in I (or B)
Taken care in magnet design by choosing the load line of the magnet so as to operate at nearly 80% of the critical current
Energy- deposited or premature Quenches
Critical surface is crossed due to an increase in T
Taken care in magnet thermal design & magnet fabrication by prestress to avoid epoxy cracks during powering of the magnet

Warm Bore LHe cooled SC Solenoid magnet for MHD experimental Studies

भाभा परमाणु अनुसंधान केंद्र BHABHA ATOMIC RESEARCH CENTRE

Liquid Helium Cooled 4 Tesla 300mm diameter room temperature bore Superconducting Solenoid magnet

Technical specifications

Central Magnetic field	4 Tesla		
Operating current	300 A		
Magnet stored energy	930 KJ		
Room Temperature Bore	300mm		
Thermal shield	50K		
Cooled by Closed Cycle GM Cryocooler			
Operating Vacuum level	10 ⁻⁶ Torr		
Helium evaporation rate	< 1 LPH		

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

Warm Bore Conduction cooled SC Solenoid magnet for MHD induced experimental corrosion studies

Technical specifications			
Central Magnetic field	4 Tesla		
Operating current	200 A		
Magnet stored energy	1025 KJ		
Room Temperature Bore	300mm		
Thermal shield	50K		
Cooled by Closed Cycle GM Cryocooler			
Operating Vacuum level	10 ⁻⁶ Torr		

Conduction Cooled Superconducting Solenoid magnet **Development and testing**

SC Magnet Thermalisation using OFHC copper

Compression Post and Current Lead Heat Load measurement setup

Final Magnet Assembly ready for MLI wrapping and cold testing

January 27, 2020

30 years of Aditya Tokamak | Sanjay Malhotra | BARC

Back – up slides

Magnetic Measurement Techniques for qualification of accelerator magnets

SN	Method	Measurable Quantity	Facilities at BARC 6 axis Magnetic Field Mapping
1.	Solid State Sensors : Hall Probes	 (a) Integral Magnetic field gradient (b) Higher order multipoles : Normal and skew Components (c) Magnetic centre 	system Volume of scanning : 1200 (mm) X 300(mm) X 300(mm) X 360° X 360° X 5° Magnetic field sensor: Hall probes (better than 0.1% accuracy) and induction coils Maximum weight of magnet : 1000 Kg Stretch Wire bench
2.	Harmonic Coil Measurements	 (a) Higher order multipoles measurements (b) Magnetic Centre (c) Integral magnetic field gradient 	Maximum aperture measurement : 300 mm Accuracy : better than 0.5 % Maximum weight of the magnet : No limit
3.	Stretch Wire Magnetometer	 (a) Integral magnetic Field measurements (b) Magnetic centre (c) Higher Order Multipoles 	Magnetic measurement sensors Hall probes, GMR, Flux Gate sensors, NMR magnetometer, AMR magnetometer