Compliance Sheet for Electrochemical Impedance Spectroscopy Setup for Solar Photovoltaic Devices सौर फोटोवोल्टिक उपकरणों के लिए विद्युत रासायनिक प्रतिबाधा स्पेक्ट्रोस्कोपी सेटअप के लिए तुलना पत्र

Here we are looking for a Potenstiostat Galvanostat Impedance Analyzer for the following applications:

- 1. I-V characteristics of thin films and semiconductor devices (like solar photovoltaic, diode etc.).
- 2. Impedance spectroscopy of semiconductor devices (like solar photovoltaic, diode etc.).

S.	Particulars	S.	IPR's Requirement / Specifications		Vendors' Specification
No.		No.		T	
1	Power Amplifier	1.1	Compliance Voltage	≥ ± 25 V	
1		1.2	Maximum Current	≥1 A	
2	Potentiostat Bandwidth	2.1	≥ 5 MHz		
Pote	ntiostatic Mode				
	Voltage Control	3.1	Applied DC Voltage Range	± 10 V (selectable)	
3		3.2	Applied DC Voltage Resolution	≥ 16 bit	
		3.3	Maximum DC voltage scan Rate	≥ 100 V/sec	
	Current	4.1	Measured DC Current Range	10nA to 1A	
4	Measurement			9 decades (ranges) or more	
		4.2	Measured DC Current resolution	≥ 16 bit	
Galv	anostatic Mode				
	Current Control 5.1	5.1 A	Applied DC Current Range	10nA to 1A	
5				9 decades (ranges) or more	
		5.2	Applied DC Current resolution	≥ 16 bit	
6	Voltage	6.1	Measured DC Voltage Range	± 10 V	
0	Measurement	6.2	Measured DC Voltage Resolution	≥ 16 bit	
7	Leakage Current	7.1	≤ 10 pA		
	Or Input Bias Current				
Elect	Electrochemical Impedance Spectroscopy (EIS) Mode				
	Impedance (EIS	8.1	Mode	Potentiostatic and Galvanostatic	
8	mode)	8.2	Frequency Range	10μHZ to ≥ 5MHz	
		8.3	Frequency Resolution	10 to 100 steps / decade	

Vendors' seal and Sign

1	I	8.4	Maximum Input Voltage range	±10V		
		8.5	Input Impedance	≥ 1 Tohm in parallel with ≤ 10 pF		
		8.6	Applied AC amplitude	≤ 1mV rms to ≥ 100 mV rms		
		8.7	AC voltage resolution	≤ 0.5mV		
		8.8	Swipe Mode	Linear and Logarithmic		
9	Cell Connections	9.1	Cell / Electrode Connections	2, 3, 4 (WE, S, CE, RE) and ground electrode		
	cen connections	3.1	End Connectors with cables	Following types of end connectors are required:		
			End Connectors with capies	Crocodile Clips		
				2. Male type BNC connection		
				(both for each connection)		
		9.2		3. Proper required connectors to be given for		
				converting connections from 4 to 2 probe		
				connections		
				(Note: we have probe setup with panel		
				mounted female BNC connections)		
10	Data Acquisition	10.1	A/D converter (ADC)	≥ 16 bit		
		10.2	D/A converter (DAC)	≥ 16 bit		
11	Interface to PC	11.1	, ,	r connection between PC to instrument and with		
			-	matching end connectors at both ends)		
12	Dummy Cell	12.1	External Dummy Cell should be provided with the instrument for testing purpose			
	Power Requirement	13.1	Total Maximum Power	≤ 1000 W		
13		13.2	Mains Input	230V, 50Hz, Single Phase AC, Indian Standards		
		13.3	Connection	3 pin top plug as per Indian Standards		
	PC (Computer	14.1		minimum 21 inch LED monitor OR a laptop with		
	Specification)	112	minimum of 15 inch LED screen sho	·		
	14.		Licensed windows 10 Professional should be provided with computer Microprocessor: i5-10th generation or higher version			
		14.3	Hard Disk : ≥ 500 GB	n or nigher version		
14		14.4	appropriate required USB ports for	connection of instrument		
		14.5	USB mouse (in case of desktop)	connection of instrument		
		14.6	USB Key board (in case of desktop)			
		14.7	One spare USB port and One spare			
		14.8		·		
		14.5	All necessary power and other cables and connections should be provided.			

	т			
	Software	15.1	software for all measurement, fitting, analysis etc. should be provided	
		15.2	software should have proper user friendly graphic environment for plotting, overlay,	
		13.2	fitting, analysis, simulation etc.	
15		15.3	Control of all the hardware should be done through software	
		15.4	Data Analysis - Capability of Real Time fit, equivalent circuit fitting, Simulation etc.	
		15.5	Compatible to Windows 10 operating system	
		15.6	License - Lifetime	
	Type of	16.1	Cyclic Voltammetry	
16	Measurements	16.2	Electrochemical Impedance Spectroscopy (EIS)	
10		16.3	Linear Sweep Voltammetry	
		16.4	Chrono Techniques (Voltammetry + Amperometry)	
	Measurements of	17.1	Current - DC bias Voltage (I-V)	
	Solar Photovoltaic	17.2	Capacitance - DC bias Voltage (C-V) with various frequencies	
	Device	17.3	Mott Schottky analysis (1/C ² -V) with various frequencies	
		17.4	Capacitance - Frequency (C-f) with various biasing voltage	
17		17.5	Imaginary Impedance - Real Impedance (Z _{im} - Z _{re}) with various frequencies (i.e.	
		17.5	Nyquist Plot / Cole-Cole plot)	
		17.6	Impedance - Frequency (Z-f) (i.e. Bode Plot)	
		17.7	Current - Time (I-t)	
		17.8	Voltage - Time (V-t)	
18	Warranty and	18.1	Minimum One Year warranty from the date of installation	
10	Service	18.2	Supplier should provide onsite warranty and service support.	
	Scope of Vendor	19.1	Fabricate / Supply & Testing of setup	
19		19.2	Installation and commissioning at FCIPT, IPR,	
13		13.2	Demonstration on IPR's thin film solar photovoltaic device sample	
		19.3	Operation Training to IPR personnel at IPR site (FCIPT campus)	
20	Delivery Time	20.1	12 weeks from the date of P.O.	
21	Installation	21.1	2 weeks from the date of delivery	

	Factory Acceptance		Following test should be conducted using external dummy cell available with the	
	Test		instrument and results of the test should be sent to IPR for approval before dispatch:	
			1. DC measurement:	
			a. Connect the instrument to the resister in the range of 1 MOhm (as per available	
			in dummy cell) in the dummy cell and swipe the voltage from -10V to +10V (in	
			equidistance 100 points) and record the current. Data should be sent in excel	
			file format with screen shot of the measurement for approval of dispatch.	
			b. Connect the instrument to the resister in the range of 1 KOhm (as per available	
			in dummy cell) in the dummy cell and swipe the voltage from -10V to +10V (in	
22		22.1	equidistance 100 points) and record the current. Data should be sent in excel	
			file format with screen shot of the measurement for approval of dispatch.	
			2. EIS measurement:	
			a. Connect the instrument to the Randle circuit of the dummy cell and measure	
			the impedance (i.e. Nyquist Plot) for 10μHz to 1MHz frequency range and	
			calculate the value of circuit components (i.e. series resistance (100-1000 Ohm	
			as per available in dummy cell), parallel resistance (1-10 KOhm as per available	
			in dummy cell) and capacitance (~1μF as per available in dummy cell)) by fitting	
			the measured data using the software. Data should be sent in excel file format	
			with screen shot of the measurement for approval of dispatch.	

	Acceptance Criteria		Testing will be performed by vendor's engineer at IPR in presence of IPR's technical	
	(Testing at IPR)		person.	
			Following tests will be done for resistivity measurement using I-V characteristics:	
			1. I-V test for the range of instrument with different resistors in potentiostatic and	
			galvanostatic mode (2-probe measurements)	
			a. 1 Ohm or less to 10 Ohm for lower voltage (1V range) and higher current	
			range (1 A range)	
			b. 100 Ohm – 10 KOhm for mid voltage (5 V range) and mid current range	
			(10 mA range)	
			c. 1 MOhm for higher voltage (10 V range) and lower current (10 nA range)	
			2. Measurement of Sheet resistance of thin film using 4-probe setup to test the	
			working in four probe mode. (galvanostatic mode) (Note: four probe setup and	
		23.1		
			metallic thin film will be provided by the IPR with four banana lugs to connect to	
23			the instrument)	
			3. Following tests will be performed at external dummy cell and IPR provided	
			photovoltaic cell (CZTS absorber based thin film solar cell) in impedance (EIS)	
			mode:	
			a. I-V characteristics of the cell (as per PN junction)	
			b. Mott Schottky analysis $(1/C^2 - V)$ where voltage is applied -5 to +5 V and	
			Capacitance is measured with various frequencies 100 Hz, 1KHz, 10KHz,	
			100KHz, 1MHz, 5MHz	
			c. Capacitance - Frequency (C-f) where frequency is varied from 100Hz to	
			5MHz in steps decades with various biasing voltage(-5V to +5V)	
			d. Imaginary Impedance - Real Impedance (Z _{im} - Z _{re}) with various frequencies	
		(from 10μHz to 5 MHz with variation of 10 to 100 points in every decade)		
		(i.e. Nyquist Plot / Cole-Cole plot)		
		e. Impedance - Frequency (Z-f) (i.e. Bode Plot) for the same range as		
			mentioned above.	

Any Other information / feature etc. need to be mentioned: