NSTX-U Real-time Coil Protection and Power Supply Control Coll of Wm & Mary Columbia U CompX General Atomics FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U Nova Photonics Old Dominion **ORNL** **PPPL** Princeton U **Purdue U** SNL Think Tank, Inc. UC Davis **UC Irvine** UCLA UCSD U Colorado **U** Illinois U Maryland U Rochester **U Tennessee** U Tulsa **U** Washington **U Wisconsin** X Science LLC #### **Keith Erickson** Stefan Gerhardt, Paul Sichta, Tim Stevenson, Weiguo Que and the NSTX Research Team 10th IAEA Technical Meeting on Controls, Data Acquisition, and Remote Participation for Fusion Research Ahmedabad, India April 20-24, 2015 Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep #### **NSTX Multi-Year Upgrade** - NSTX-U extends the purpose and scope of NSTX beyond its initial design parameters and stated goals - Elongated pulse length from 1s to 5s - Plasma current doubled - Magnetic load quadrupled - New coils - Redesigned Toroidal Field coil for higher B field - Higher capacity Ohmic Heating coil - Three new Poloidal Field coils - Major power system changes force new RT software approach ### NSTX-U Center Stack Upgrade Higher performance requires infrastructure enhancements ### Previous New center-stack - > 5x longer pulselength - Expect 2x higher T by doubling B_T, I_P, and NBI heating power | > | | R ₀
(m) | A_{min} | I _p
(MA) | B _T
(T) | T _{TF} (s) | R _{CS}
(m) | R _{OB}
(m) | OH flux
(Wb) | |-------------|--------|-----------------------|-----------|------------------------|-----------------------|---------------------|------------------------|------------------------|-----------------| | | NSTX | 0.854 | 1.28 | 1 | 0.55 | 1 | 0.185 | 1.574 | 0.75 | | | NSTX-U | 0.934 | 1.5 | 2 | 1 | 6.5 | 0.315 | 1.574 | 2.1 | ### **NSTX-U Power Supply System** ### 15 Independent power systems for magnetic coils | Heterogeneous 3 | Systems | |-----------------|----------------| |-----------------|----------------| - Each individual system is fixed - Systems differ from each other - Unipolar or Bipolar configurations - Individual power supply sections - Voltage supplied: 1kV 6kV - Current limit: 10kA 150kA | PF1AU | PF1AL | |-------|-------| | PF1BU | PF1BL | | PF1CU | PF1CL | |-------|-------| | | | | PF2U | PF2L | |------|------| |------|------| PF4 PF5 OH TF HF ### **NSTX-U Support Structures Enhanced to Handle** #### **4x Electromagnetic Forces** Install Upper & Lower Al Block External-Internal Reinforcements Install Upper & Lower Umbrella Arch Reinforcements Install New TF Outer Leg (TFOL) Support Install New Pf4/5 Support Replace existing Pf4/5 Support Column Install New Upper & Lower Umbrella Leg/Foot/Slide **Install New Lower Lid** **Install New Pedestal** **Install New Upper Lid** Replace Upper & Lower PF2/3 clamp hardware Install additional (upper & lower) PF2 Clamp **Install new TF-VV Clevis** Replace existing Upper & Lower Pf4/5 clamp hardware Install new TFOL Connecting Rods & Rod Ends Modify support to provide clearance for connecting rod Add Extensions & Anchors to Supports #### **NSTX Upgrade Requires Advanced Control and Protection** - Legacy protection mechanisms ill suited for new scenarios - Complex interactions require advanced computations - Computations will change throughout the experiment - A new approach enables an adaptive, maintainable system that reliably delivers necessary functionality #### **NSTX-U Digital Coil Protection System** - New real-time system connected directly to current measurement devices - Immediately terminates pulse when detecting any issue - Actively prevents pulse if issues arise between shots - Fail safe logic protects against DCPS internal failures - Large computational capacity - Compares ~600 equations against 2 limits each at 5 kHz rate - Checks against instantaneous current and multiple predicted currents - Over 90% CPU headroom for future growth as needs change - Easily extendable and parallelizable - Already adapted and modified to support NSTX-U Aquapour - Production issue with new TF/OH coils restricts current ratios - New algorithms instantly added to DCPS to compensate ### **Digital Coil Protection System Data Flow** ### **Digital Coil Protection System Data Flow** ### **Plasma Control System Features and Motivation** - Cross platform Plasma Control System - Built originally for DIII-D by General Atomics - Ported to NSTX ~15 years ago - Shared with MAST, EAST, KSTAR - Runs custom algorithms inside a standard framework - Handles all non-algorithm specific requirements - Shot setup via consistent interface - Variable cycle timing per CPU core - Data archival and retrieval - Shot replay for testing purposes ### Old System Multiple Functions Combined Into a Custom Framework ### New System Legacy PSRTC Divided Into Discreet Tasks ### Old RTC Communication Layout Complex and Brittle ### Old RTC Communication Layout Complex and Brittle ### New RTC Communication Layout Streamlined and Reliable ## New RTC Communication Layout Separation by Function ### **New System Layout Organizes Responsibility** - Control and Protection functionality decoupled - RTC handles all Control functions - DCPS handles all protection functions - RTC Sim integrated into actual runtime framework - RTC code is identical in Real or Sim modes - RTC Sim injects input and samples output - RTC utilizes PCS infrastructure - RTC and PCS can communicate easily for more advanced control or safer shutdowns #### NOS – NCS Output Subsystem - Purpose: - Formulate all command words - Adjudicate input from RTC and DCPS - Command words are conceptually and logically separate from the core functions of RTC, DCPS, and PCS - Both RTC and DCPS will provide information on coils - During a pulse, upon DCPS fault signal: - RTC can attempt to invert off the power supply if desired - Wait a preset time (0-100ms), and then suppress and bypass - Between pulses, upon DCPS fault signal: - RTC will not be running - Immediately suppress and bypass ### Real-time Computer Upgrade From Original Prototype Required to Support Added Functionality - Concurrent RedHawk 6.5, not MRG - Supermicro H8QGL - Opteron 6386 SE 2.8GHz - 4 sockets x 16 cores = 64 core total - 64 GB Registered ECC memory - Bus separation required to maintain RT determinism - 6 PCI Express Slots in two separate banks - CUDA capable video - Serial FPDP I/O - Realtime Clock and Interrupt Module (RCIM) ### Outsourcing OS Expertise Removes Distractions from DCPS Development - Concurrent Corp. offers RedHawk - Based on RedHat - Custom kernel to support deterministic run time behavior - NightStar analysis package permits performance optimization - Guaranteed process dispatch latency of <u>less than 15 us</u> - Provides certified I/O drivers - Full support - Source code available - Provides RT development support services - Troubleshoots all operating environment issues - Superior approach to RT Linux compared to MRG - Kernel separation, not preemption - More reliable, easier to manage, more efficient ### **Super Micro H8QGL Internal Schematic** ### **Super Micro H8QGL Internal Schematic** ### **Super Micro H8QGL Quiet Bus Schematic** ### **Super Micro H8QGL Quiet Bus Schematic** ### **Computing Requirements** #### **Summary** - NSTX-U changes necessitate rethinking real-time software - Control and Protection mechanisms decoupled - Protections runs twice - Dedicated direct connection on separate computer - Identical software on the controls computer - Control incorporated into existing physics control framework - Improves Physics and Engineering communication - Enables future advanced controlled shutdown methods - Computer upgrade enables enhanced capabilities - Satisfies immediate near term needs - Allows eventual long term growth