

NSTX-U Real-time Coil Protection and Power Supply Control

Coll of Wm & Mary Columbia U

CompX General Atomics

FIU INL

Johns Hopkins U

LANL

LLNL Lodestar

MIT

Lehigh U

Nova Photonics

Old Dominion

ORNL

PPPL

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Tennessee

U Tulsa

U Washington

U Wisconsin

X Science LLC

Keith Erickson

Stefan Gerhardt, Paul Sichta, Tim Stevenson, Weiguo Que and the NSTX Research Team

10th IAEA Technical Meeting on Controls, Data Acquisition, and Remote Participation for Fusion Research
Ahmedabad, India
April 20-24, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA. Cadarache IPP, Jülich IPP, Garching

ASCR, Czech Rep

NSTX Multi-Year Upgrade

- NSTX-U extends the purpose and scope of NSTX beyond its initial design parameters and stated goals
 - Elongated pulse length from 1s to 5s
 - Plasma current doubled
 - Magnetic load quadrupled
 - New coils
 - Redesigned Toroidal Field coil for higher B field
 - Higher capacity Ohmic Heating coil
 - Three new Poloidal Field coils
- Major power system changes force new RT software approach

NSTX-U Center Stack Upgrade Higher performance requires infrastructure enhancements

Previous New center-stack

- > 5x longer pulselength
- Expect 2x higher T by doubling B_T, I_P, and NBI heating power

>		R ₀ (m)	A_{min}	I _p (MA)	B _T (T)	T _{TF} (s)	R _{CS} (m)	R _{OB} (m)	OH flux (Wb)
	NSTX	0.854	1.28	1	0.55	1	0.185	1.574	0.75
	NSTX-U	0.934	1.5	2	1	6.5	0.315	1.574	2.1

NSTX-U Power Supply System

15 Independent power systems for magnetic coils

Heterogeneous 3	Systems
-----------------	----------------

- Each individual system is fixed
- Systems differ from each other
 - Unipolar or Bipolar configurations
 - Individual power supply sections
 - Voltage supplied: 1kV 6kV
 - Current limit: 10kA 150kA

PF1AU	PF1AL
PF1BU	PF1BL

PF1CU	PF1CL

PF2U	PF2L
------	------

PF4

PF5

OH

TF

HF

NSTX-U Support Structures Enhanced to Handle

4x Electromagnetic Forces

Install Upper & Lower Al Block External-Internal Reinforcements

Install Upper & Lower
Umbrella Arch
Reinforcements

Install New TF Outer Leg (TFOL) Support

Install New Pf4/5 Support

Replace existing Pf4/5 Support Column

Install New Upper & Lower Umbrella Leg/Foot/Slide

Install New Lower Lid

Install New Pedestal

Install New Upper Lid

Replace Upper & Lower PF2/3 clamp hardware

Install additional (upper & lower) PF2 Clamp

Install new TF-VV Clevis

Replace existing Upper & Lower Pf4/5 clamp hardware

Install new TFOL Connecting Rods & Rod Ends

Modify support to provide clearance for connecting rod

Add Extensions & Anchors to Supports

NSTX Upgrade Requires Advanced Control and Protection

- Legacy protection mechanisms ill suited for new scenarios
- Complex interactions require advanced computations
- Computations will change throughout the experiment
- A new approach enables an adaptive, maintainable system that reliably delivers necessary functionality

NSTX-U Digital Coil Protection System

- New real-time system connected directly to current measurement devices
 - Immediately terminates pulse when detecting any issue
 - Actively prevents pulse if issues arise between shots
 - Fail safe logic protects against DCPS internal failures
- Large computational capacity
 - Compares ~600 equations against 2 limits each at 5 kHz rate
 - Checks against instantaneous current and multiple predicted currents
 - Over 90% CPU headroom for future growth as needs change
 - Easily extendable and parallelizable
- Already adapted and modified to support NSTX-U Aquapour
 - Production issue with new TF/OH coils restricts current ratios
 - New algorithms instantly added to DCPS to compensate

Digital Coil Protection System Data Flow

Digital Coil Protection System Data Flow

Plasma Control System Features and Motivation

- Cross platform Plasma Control System
 - Built originally for DIII-D by General Atomics
 - Ported to NSTX ~15 years ago
 - Shared with MAST, EAST, KSTAR
- Runs custom algorithms inside a standard framework
- Handles all non-algorithm specific requirements
 - Shot setup via consistent interface
 - Variable cycle timing per CPU core
 - Data archival and retrieval
 - Shot replay for testing purposes

Old System Multiple Functions Combined Into a Custom Framework

New System Legacy PSRTC Divided Into Discreet Tasks

Old RTC Communication Layout Complex and Brittle

Old RTC Communication Layout Complex and Brittle

New RTC Communication Layout Streamlined and Reliable

New RTC Communication Layout Separation by Function

New System Layout Organizes Responsibility

- Control and Protection functionality decoupled
 - RTC handles all Control functions
 - DCPS handles all protection functions
- RTC Sim integrated into actual runtime framework
 - RTC code is identical in Real or Sim modes
 - RTC Sim injects input and samples output
- RTC utilizes PCS infrastructure
- RTC and PCS can communicate easily for more advanced control or safer shutdowns

NOS – NCS Output Subsystem

- Purpose:
 - Formulate all command words
 - Adjudicate input from RTC and DCPS
- Command words are conceptually and logically separate from the core functions of RTC, DCPS, and PCS
- Both RTC and DCPS will provide information on coils
- During a pulse, upon DCPS fault signal:
 - RTC can attempt to invert off the power supply if desired
 - Wait a preset time (0-100ms), and then suppress and bypass
- Between pulses, upon DCPS fault signal:
 - RTC will not be running
 - Immediately suppress and bypass

Real-time Computer Upgrade From Original Prototype Required to Support Added Functionality

- Concurrent RedHawk 6.5, not MRG
- Supermicro H8QGL
 - Opteron 6386 SE 2.8GHz
 - 4 sockets x 16 cores = 64 core total
 - 64 GB Registered ECC memory
- Bus separation required to maintain RT determinism
- 6 PCI Express Slots in two separate banks
 - CUDA capable video
 - Serial FPDP I/O
 - Realtime Clock and Interrupt Module (RCIM)

Outsourcing OS Expertise Removes Distractions from DCPS Development

- Concurrent Corp. offers RedHawk
 - Based on RedHat
 - Custom kernel to support deterministic run time behavior
 - NightStar analysis package permits performance optimization
 - Guaranteed process dispatch latency of <u>less than 15 us</u>
- Provides certified I/O drivers
 - Full support
 - Source code available
- Provides RT development support services
- Troubleshoots all operating environment issues
- Superior approach to RT Linux compared to MRG
 - Kernel separation, not preemption
 - More reliable, easier to manage, more efficient

Super Micro H8QGL Internal Schematic

Super Micro H8QGL Internal Schematic

Super Micro H8QGL Quiet Bus Schematic

Super Micro H8QGL Quiet Bus Schematic

Computing Requirements

Summary

- NSTX-U changes necessitate rethinking real-time software
- Control and Protection mechanisms decoupled
- Protections runs twice
 - Dedicated direct connection on separate computer
 - Identical software on the controls computer
- Control incorporated into existing physics control framework
 - Improves Physics and Engineering communication
 - Enables future advanced controlled shutdown methods
- Computer upgrade enables enhanced capabilities
 - Satisfies immediate near term needs
 - Allows eventual long term growth

