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Computational Simulations and
virtual Experimentation

* Computer simulation facilitate testing of all the
feasible test cases. It is a useful aid for the predicting
experiments where operational cost is very high.

* Provides flexibility of parameters variation and
understading of phenomena and operational regimes

* Open source technologies are matured and provides
rich programming APIs



Divertors in a tokamak

Divertor System

Inner and Quter Vertical
Target (IVT and OVT)

Plasma-Facing Unit
(PFU) of OMT

Inner and Outer Particle
Reflector Plate

* Divertors are important
plasma facing
components.

* Used to exhaust He ash
and heat flux and
control of impurities
and fuel density.

* Absorb high heat load
to improve performance
of tokamak

Figure 1: Main components of a ITER tungsten divertor casesette [1]



Complexities In Divertor design

* Subject to high heat load of 5-20 MW/m?
* Design challanges:

— Requires materials to withstand intense heat load
— Cooling system to protect system from burnout and
environment issues
* Operational stability under: ﬁ-
— Static load conditions of plasma
Tungsten Macro brush

— Transient load conditions

(in case of instability)

Tungsten Monoblock



Critical Heat Flux (CHF) phenomena
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Thermal hydraulic correlations

*  Convection heat transfer coefficient is given by

h=Nuk/d Q=m'CpAT

Where, Q = Rate of heat energy removed U/u.)
m’' = mass flow rate (Kg/:.-,)

Cp = Specific Heat Capacity (J,/I\ghjl

AT - E‘l‘!l‘!lillll IL‘I]'I[.'!'I.'I'.']TI.II'L“ rise

Nu - Nusselt number
k - Conductivity of coolant (W /mK)

d - Inside diameter of the tube (m);

*  The Reynolds number (Re), Prandtl number (Pr) and the Nusselt Number (Nu)) are given by
the relations
Re=pVd/p  Pr=pCp/k Nu= 0.023*Re%%Pr04
Where,
p — Density of the fluid
B — Dynamic viscosity .’:Kg/m.:;}
V —Velocity of the fluid (m/s)
d — Inside diameter of the tube (m)

k — Conductivity of coolant (W /mK)



Tong-75 CHF correlation [3]

» CHF model for one sided heating condition of fusion devices are modeled
by many relations. Tong-75 correlation has shown good agreement with
experiments. It is a semi empirical model and also used for thermo-

hydraulic analysis of ITER divertors.

1.8
CHF,,=0.23fGH (1+0.00216 -
C
d 0.32

— gR -0.06 ~h
f=8Re )

ngfg

Hy

Rel-° Ja) Where CHF,, is the critical heat flux at the

tube wall, G is the coolant mass velocity, T is
the local coolant temperature, P is the local
coolant pressure, T_ is the saturation

sat
temperature corresponding to P, Hy is the
latent heat of vaporization of water at T, Pc is

the critical pressure, Re is the Reynold number,
d, is the hydraulic diameter, p, is the water

viscosity at T, Ja is the Jakob number, p; is the
water density at T, p, is the vapour density at
Tsat’
diameter

C, is water specific heat, do is reference



Computational complexity and
parametric Optimization

* Computational complexity:

- Non-linear inter parameter dependency {Tfl Tl {Tsa p] {P,Tgat},{P,Hfg],{p, Tt}

and curve fitting required for the CHF
computation

— Thermo physical properties for water are
taken from NIST database The

* Parametric Optimization: l I

— Find best local cooling condition viz. t
Pressure, flow and temperature for \ 7/
maximum heat transfer using parametric
optimization of CHF relation such that
steady state wall heat flux is maintained.

) o . ) Figure 3: Schematic illustrating the peaking
— Constraint Optimization by linear of heat flux to the coolant for a given

approximation (COBYA) technique is incident heat flux
used for optimization for the parametric
optimization.



High Heat flux Test facility (HHFTF) at IPR

* High heat flux facilities is commissioned to test the thermal
performance of divertor mock up and cooling system under intence
heat exposure.

* It will use electron gun (200KW) as source and high pressure and
temperature water cooling system (under procurment).

Need to design an integrated toolkit enriched with computational
routines and an experimental framework for simulation and
interface to the sensors and transducers

Figure 5: 200 kW Electron Gun

Figure 4: Vacuum System of HHFTF



Software development targets

* Develop computation code to predict the optimum cooling

system parameters of pressure, temperature and flow.
* Graphical user interface
*[&C hardware integration and simulation flexibility:.

*Provide a virtual simulation of the system operation using
optimized parameters.

* Development using open source softwares and relevant to
fusion technology road map



Design Description
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| -- Implementation (1/3)

EPICS
( Experimental Physics and Industrial Control System )

* A rich control system development framework for I&C integration ,
Open source, Used at around ~350 labs world wide (including ITER)

*Rich tools for data display, archivals and alarms are available.

* Support a good user interface toolkit like control system studio, which
is based on eclipse and has python interface.

*I/O simulation support



Implementation (2/3)

* Python:
- Used for computational processing module development

— Support object oriented and modular programming

— Scripting language, clear indentation, popular and open
source

— Rich computional libraries: Numpy , Scipy Matplotlib

— Support test framework e.g. NOSE
* Postgress Database: @

* Used to hold NIST database. A




Implementation (3/3)

* pyepics:

— This library is used to provide the interface between
EPICS and python .

— Used at university of chicago
— offers object oriented and functional form of interface.
— And process variable processing capabilities.

— Well documented and can be used where extensive
simulation is required.



Specific Heat (KJ/Kg-Celcius)

Saturated Temperature (Celcius)

Results : Curve fitting
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Results : Heat flux calculations

user_interface_module1.opi

ON COMPUTATIONS

o [ # =]

Oz
o-

(Temp,Tu

i Area of surface (mm2)
(Flow,Tube di

Area of tube (mm2)

Incident Heat Flux

(IHF)
CHF CALC
Inerwall Heat Flux
(IWHF)

Peaking Facto(fp)
Total Heat Flux

Tong 75 Coorelation

CHF, = 0.23(GH,(1 + 0.00216(P/P,)'* Re"*Ja)




Results: CHF vs Pressure and optimization
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Figure: CHF Optimization and Pattern Visualization

CHF vs. P ‘




Results: Parametric Optimization
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Results: Heat transfer simulation on
optimised set points

cs-studio I B = (]
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Validation

* NOSE frame work of python is used for automated
testing of simulated test cases and heat transfer
coorelations.

* Published data of international 2006 CHF database
table is used as a referance for validation.

* Results of optimization are validated using graph
plotting.



Conclusion and Future directions

* A integrated tool kit having experimental and
computational features is presented. Useful for the
high heat flux test experiments of similar nature

* The parametric optimization offers the required
parameters for the operation.

* The toolkit can be extended for
— Advanced cooling tube geometries
— Simulation capabilities

— Multi-objective optimization features.
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