This file has been cleaned of potential threats.

To view the reconstructed contents, please SCROLL DOWN to next page.

Seminar

Institute for Plasma Research

Title:	Optimization of Circulation Power in High
	Temperature Reactors using Helium-Carbon
	dioxide (He-CO ₂) Binary Gas Coolant
	as a replacement of Helium
Speaker:	Mr. Ankit Gandhi
	Institute for Plasma Research, Gandhinagar
Date:	29 th July 2022 (Friday)
Time:	03:30 P.M.
Venue:	Committee Room 3, (New Building), IPR
Join the talk	Online: <u>https://lobby.ipr.res.in/AGandhi_Talk</u>

Abstract

Helium (He) Gas is widely used as a coolant in high temperature reactors due to its good transport and thermal properties. Helium Gas has found applications in cooling systems of High Temperature Gas cooled Reactor (HTGR), breeding blankets of ITER and DEMO reactors.

A major disadvantage of Helium is its extremely low density, which requires high input circulation power for the compressor. Recent studies have shown that mixing of Helium with a relatively dense gas like Carbon dioxide (CO₂), Xenon (Xe), Krypton (Kr), etc may mitigate the disadvantage of Helium low density.

In the present work, a numerical analysis of First Wall (FW) channels of breeding blanket was performed for Helium Gas and He-CO₂ binary gas mixture. CFD tools were used to compare the thermal-hydraulic performance of FW channels using Helium Gas and He-CO₂ binary gas mixture. It has been found that He-CO₂ mixture in an optimum mole fraction range of 0.4-0.5 reduces circulation power by an order of magnitude compared to Helium Gas, while meeting the thermal requirements of the FW channels.

Keywords: Helium, He-CO₂, First Wall