

LIGO: An Observatory for Detection of Gravitational Wave

S.Sunil

LIGO-Division Institute for Plasma Research, Bhat, Gandhinagar, Gujarat India

States of Matter

Source of matter

Form	Duration		
Earth	4.5 billion years		
Single celled	3.8 billion years		
Plants	600 million years	111	111
Fish	420 million years		
Reptiles	300 million years	(7	
Mammals	178 million years		
Birds	65 million years		
Primates	55 million years		
Humans	Present		

But time did not start when Earth was formed...... And so did the states of matter

3rd September 2021

Age of Universe

Deciphering the Answer

- Joseph Taylor and Russell Hulse from the discovery of binary pulsar 1913+16 in 1974 noticed some curious events
- Pulsar is a natural timing clock in the sky
- Pulsar rotated on its axis at 17 times per second (period = 59 ms) but, showed a variation in arrival time having a period of 7.75 hours
- Over an observation of 30 years, it was concluded that this pulsar had a binary pair and with time lost its energy.
- The loss in energy was in agreement with Einstein's general theory of relativity.
- 1993 Hulse and Taylor received the Nobel Prize in Physics

The question still remains how did the loss of energy happen and how it could be observed

Courtesy: https://en.wikipedia.org/wiki/Hulse%E2%80%93Taylor_binary

GR explained briefly

GR is essentially distortion of space by dense object predicted by Einstein

In comparison to Newton's laws of Gravity (in our world), Einstein's GR highlights warping of space by dense object and a less dense object moving towards the more denser object

Gravitational Lensing

Gravitational time dilation

S.Sunil

Courtesy (Gravitational lensing): https://www.jpl.nasa.gov/news/searching-for-far-out-and-wandering-worlds

Courtesy (Gravitational time dilation): https://nasa.tumblr.com/post/187009797389/how-gravitywarps-light

Newton's SPACE is RIGID Einstein's GR consider SPACE has a finite stiffness, therefore the space is elastic

Einstein field equation is given by:

$$\mathbf{T} = \frac{c^4}{8\pi G} \,\mathbf{G}$$

T : Stress energy tensor**G** : Einstein curvature tensor

A Good analogy is Hooke's Law on spring-mass system F=k x where F is the force creating deformation of x on spring

The value $k = \frac{c^4}{8\pi G}$ is 10^{43} N and the displacement is k^{-1} which is very small

Due to this extreme stiffness of space a dense matter is required to deform the SPACE

 Gravity is the curvature in space due to massive objects and is dynamical. From here the concept of spacetime arises

Loss of Energy

S.Sunil

Why the pulsar 1913+16 showed a variation in arrival time of the pulses: was orbiting with another star

Observation: There was a variation in period of the orbital motion

Conclusion: Decay in orbit – Loss of energy

A perfect spherical object will not deform space

Deformation is created only by non-spherical motion of masses

Azadi Ka Amrit Mahotsav 3rd September 2021

Binary object in orbital motion deforming the space

As loss of energy is periodic, it signifies a wave

As the loss in energy is in agreement with Einstein's prediction of gravitational waves, the energy dissipated by an orbiting binary is said to be the source of Gravitational Wave (GW)

Gravitational Wave

GWs are transparent to matter and they set matter to oscillate GWs propagate with speed of light

The simplest form of non-spherical deformation is the quadrupole moment, Indicates that GW are quadrupole in nature

Relative change in spacing between the test masses 'h' is $\frac{\Delta l}{L}$, which is the GW amplitude

Sources of Gravitational waves

Black hole pairs Courtesy: <u>https://www.ligo.caltech.edu/news/ligo20160211</u>

Courtesy: https://theconversation.com/at-last-weve-foundgravitational-waves-from-a-collapsing-pair-of-neutron-stars-85528

Neutron star pairs

Supernova

1 solar mass = 1.9x10³⁰ kg 1 MPc = 3x10²² m

An example:

Azadi Ka mrit Mahotsav 3rd September 2021 Assume coalescing black holes have M=1 x solar mass, At 10 MPc distance, the strain amplitude will be $h \sim \frac{r_s}{R} \epsilon^{0.5}$

r_s is the Schwarzchild radius ($r_s=2\frac{GM}{c^2}$) and R (10MPc) is the distance of the observer The value of h~3x10⁻²² which is small, and the displacement value $\Delta l = h.L \sim 1.2x10^{-18}m$

Azadi _{Ka}

3rd September 2021

Earlier GW Detectors

Laser Interferometer

Photodetector

Simple Michelson arrangement helps

Advantages over Bar detector

- Work at wide range of frequencies
- Velocity of light compared instead of sound
- No length limitation due to resonant frequency
- Light can be reflected back and forth to increase path length

GW frequencies ranges from ${\sim}10^{\text{-}17}\text{Hz}$ to ${\sim}10^3$ Hz

Frequency >10Hz - ground based detectors Lower frequency – space based detectors

S.Sunil

To have a proper coupling between the GW and the detector:

- The storage time of light in the interferometer must match the GW period
- The power in the optical cavity should be high to see the effect

Mahotsav

3rd September 2021

LIGO detector

Two more mirrors are introduced in the detector:

- Power recycling mirror
- Signal recycling mirror

Other parameters which influence the detector:

- i. Seismic noise Due to ground motion
- ii. Newtonian noise Gravity gradient
- iii. Thermal noise Mirrors and suspension
- iv. Quantum noise Photons

Main task is to identify and then mitigate the noise

LIGO observatory

LIGO-India

LIGO-India site: Aundha, Near Hingoli in Maharashtra state

DCSEM – Site acquisition, development and civil infrastructure

IPR – Vacuum facility setup, vacuum controls and monitoring, interferometer controls and data acquisition*

RRCAT – Interferometer detector, , 3rd generation & upgrades technology development and detector controls*

IUCAA – Site identification & characterization, GW science, Data handling, storage and analysis

4-Nodal institutes

LIGO-India when completed will add to the network of existing detectors and improve localization of the GW sources

Installation and Setup Challenges in LIGO

Aligning 4 Km beam tube

3rd September 2021

Suspended optics

Courtesy: ligo.caltech.edu, LIGO-G1701594-v1

hydraulic external preisolator (HEPI) (one stage of isolation) active isolation platform (2 stages of isolation)

quadruple pendulum (four stages of isolation) with monolithic silica final stage

Vacuum enclosure with suspended optics

Azadı_{ka}

Amrit Mahotsav

3rd September 2021

Challenges for IPR

Large volume chambers

Basic Symmetric Chamber (BSC)

Cryopump and Large gate valves

Horizontal Access Module (HAM)

- Beam tube
- Selection of steel for fabrication of chambers and beam tube
- Integration of BSC and HAM with spools and adapters
- Fabrication and installation of 8 km beam tube
- Integration and efficient operation of cryopumps
- Alignment and integration of large size gate valves
- Total volume to be evacuated : 10,000 m³
- Pressure to be maintained : < 10⁻⁹ mbar

Gases	Pressure (mbar)
N ₂	6x10 ⁻¹¹
H ₂ O	1x10 ⁻¹⁰
H ₂	1x10 ⁻¹⁰
CO2	2x10 ⁻¹¹
со	5x10 ⁻¹¹
CH4	3x10 ⁻¹¹

IPR's Effort towards LIGO-India project

Basic Symmetric Chamber (BSC)

SC) Horizontal Access Module (HAM)

Equipment	Unit	Basic Sy	mmetric	Horizontal
		Char	nber	Access Module
Internal Diameter	m	2.	.6	2.1
Height	m	5.2		2.9
Wall Thickness	mm	12.7		12.7
Surface Area	Sq. m	52		27
Volume	Cu. m	27		11
Quantity	Numbers	1		1
Vacuum	mbar			
Requirement :		Acceptance	1.0 x 10 -7	1.0 x 10 ⁻⁷
Main Volume		Demonstrated	8.9 x 10 ⁸	8.2 x 10 ⁸
		Acceptance	1.0 x 10 ⁵	1.0 x 10 ⁵
Annulus volume		Demonstrated	4.0 x 10 ⁻⁶	8.8 x 10 ⁶
He leak rate:	mbar.l/s			
Local		Acceptance	1.0 x 10 ⁻⁹	1.0 x 10 ⁻⁹
		Demonstrated	5.2 x 10 ¹⁰	8.2 x 10 ¹⁰
Global		Acceptance	5.0 x 10 ⁷	5.0 x 10 ⁷
		Demonstrated	3.9 x 10 ⁹	4.6 x 10 ⁻⁹

Parameters Achieved

1:1 scale prototype fabrication of BSC and HAM chambers

Animation of inspiral, merger and ring-down Inspiral, merger and ring-down of two Black-Holes of 36 and 29

solar masses.

Final black hole has a mass of 62 solar mass, rest 3 solar mass radiated as energy

Event occurred 410 Mpc from Earth

Mahotsav

3rd September 2021

 $1 \text{ solar mass} = 1.9 \times 10^{30} \text{ kg}$ $1 \text{ MPc} = 3 \times 10^{22} \text{ m}$

Strain (10⁻²¹)

-0.2

800

400 200 100 f (Hz)

40

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5 Time (s)

-0.4

-0.3

-0.2

-0.1

S.Sunil

0.5 -0.33 2

0.25

0.0

3rd September 2021

Importance of GW and GW Research

- GW study can address many key points which were either till date a prediction or confined in a mathematical calculation
- In the 100 years of Einstein's numerical calculations, phenomena like gravitational lensing and existence of black holes were actually seen
- GW research brings out a cutting edge technology in the field of science and engineering such that the least count of any scale can be improved many folds
- As a possibility (my thoughts) there might be other states of matter present around us which have low vibrational energy
- GW studies also gives out possibilities to reach those places where electromagnetic spectrum are masked

Other planned detectors

Einstein Telescope (ET) Arm length: 10 km

Courtesy:

https://stfc.ukri.org/research/particle-physics-andparticle-astrophysics/particle-astrophysics/groundbased-gravitational-wave-detectors-currentgeneration/

Laser Interferometer Space Antenna (LISA) Arm length: 2.5 million km

Courtesy:

https://www.lisamission.org/articles/lisamission/lisa-mission-gravitational-universe

Acknowledgement: LIGO-Division IPR

Thanks for listening

