IN	SIDE	THIS	ISSUE	
(3	Pages			
Toni	ia			

Research	Highlight	

Generation of a nearly mono-energetic weakly relativistic electron beam from laser-cluster interaction with an ambient magnetic field

HPC Article

Profiling 2D matrix multiplication code: Comparison study between serial and parallel programming approach

ANTYA Updates and News
HPC Picture of the Month
Tip of the Month
ANTYA Utilization: November 2023
ANTYA HPC Users' Statistics —
November 2023
Other Recent Work on HPC
(Available in IPR Library)

For the last few decades, table-top laser-plasma accelerators have brought significant progress to replace tradi-tional high-energy accelerators. The production of a relativistic electron beam (REB) from laser-plasma interaction has also become a recent topic of interest in the laser plasma community as REB has wide applications in the fast ignition technique of inertial confinement fusion and many medical applications.

In one of our recent studies [1] on laser interaction (for a wavelength of 800nm and intensity greater than 10¹⁶W/ $\rm cm^2)$ with a deuterium nanocluster (size=2.2nm) in an ambient magnetic field $\rm B_0$ demonstrate that collisionless absorption of laser light occurs in two stages via anharmonic resonance and electron-cyclotron resonance (ECR) or relativistic ECR (RECR) processes. Using a rigid sphere model (RSM) and particle-in-cell (PIC) simulation, we show that the auxiliary magnetic field B_0 enhances the coupling of the laser field to cluster electrons via improved frequency matching for ECR or RECR as well as phase matching for the prolonged duration of the 5-fs (FWHM) broadband pulse. As a result, the average absorbed energy per electron ϵ significantly jumps up to ~36–70 times its ponderomotive energy (U_p) for laser intensity I₀=7.13×10¹⁶ W/cm² (see Fig.1).

Now, to understand the dynamics of these energetic electrons towards the formation of an electron beam, the energy and angular distributions of these electrons have

been thoroughly ana-lysed. In Fig.2 we show the energy distribution of PIC electrons at points B₀ three 0.35w, w, 1.25w corre-

Electrons generated from the laser cluster interaction in an ambient magnetic field at electron cyclotron resonance (ECR) or relativistic ECR (RECR) can emerge as a nearly mono energetic weakly relativistic conical spiral electron beam with an angular spread $\Delta\theta r \sim 3^{\circ}$

we manage to use 40 nodes of ANTYA at a single run which has greatly reduced the total computation time.

- 1. K. Swain, S. S. Mahalik, and M. Kundu, Sci. Rep. 12, 11256 (2022)
- Swain, S. S. Mahalik, and M. Kundu, PHYSICAL κ REVIEW A 108, 053104 (2023).
- 3. M. Kundu and D. Bauer, Phys. Rev. Lett. 96, 123401 (2006)

Figure 1 The average total energy (\mathcal{E}_{*}), kinetic energy (KE), and potential energy (PE) per cluster electron are plotted vs normalized electron-cyclotron frequency c_{o}/ω for a range of ambient field $B_0 \approx 0-2\omega$ with an n = 5 cycle pulse of $I_0 \approx 7.13 \times 10^{16}$ W/cm² irradiating a deuterium cluster of N = 2176 and $R_0 = 2.2$ nm.

Figure 2 Energy distribution of ejected electrons from the deuterium cluster corresponding to the ambient magnetic fields $B_0 \approx 0.02$, 0.057, 0.07 a.u. (at A, B, and C in Fig. 1). The color coding is over the electron count and the yellow (light gray) region highlights maximum electron counts and respective energies

Figure 3 Histograms showing the distributions of angular deflection θr of electrons (left column) and respective polar plots (right column) with their normalized position r/R0 vs θr corresponding to those energy spectra in Figs. 2(a)–2(c) for $B_0 = 0.02$, 0.057, 0.07 a.u., respectively. Polar coordinates (r, θ ,) are color coded with their energy normalized by U

igure 4 The angular distribution of lectrons is shown in the (r) planes corresponding to B₀=0.057,0.078. Polar coordinate: shown in the (r, θ_r) of electrons are color coded with their energy normalized

sponding to point A, B and C of Fig.1. With a low value References:

 B_0 (or without it, point <u>A</u>), more electrons (yellow region) are near lower energy $\overline{e_A} \approx 0.1$; how<u>e</u>ver, the energy tail with a few electrons extends up to $\overline{\mathcal{E}}_A \approx 2.6$. This is the typical energy distribution of electrons one mostly finds in the case of Interaction LCI (Laser Cluster Interaction) with a very low B_0 (or without B_0). On the other hand, for higher B₀ values corresponding to B and C, more electrons are pushed around $\mathcal{E}_A \approx 36$ and $\mathcal{E}_A \approx 68$. This highlights the nearly monoenergetic nature of the electrons in LCI with an ambient magnetic field.

Angular deflection of an electron (θ_r) in the position space is defined as the angle between the laser light propagation in the z direction (the direction of $B_{\text{ext}} = B_0 \frac{2}{2}$) and its position vector r. This elevation angle can be obtained from z = r $\cos\theta_r$, r \perp = r $\sin\theta_r$, where r \perp = $\sqrt{x^2 + y^2}$. Fig.3 shows histograms of electrons versus $\sigma_{\rm r}$ (left column) and respective polar plots (right column) with their normalized position r/R_0 vs $\theta_{\rm r}$ corresponding to those energy spectra in (A, B, C) Fig.2. For lower B₀ = 0.35 ω (point A of Fig.2), electrons are spread over a wide angular range $\theta_{\rm r} \approx 0-175^{\circ}$ (Fig.3.a1) and the distri-bution in the (r. $\theta_{\rm r}$) plane overlains that the angular spread bution in the (r, $\theta_{\bar{r}})$ plane explains that the angular spread contains only low-energy electrons (Fig.3.a2) due to the weak coupling of the laser light to the cluster electrons. However, for $B_0 = \omega$, 1.25 ω (point B and C of Fig.2), the angular spread of electrons are $\Delta \theta_r < 4^{\circ}-3^{\circ}$ (Fig.3.b1,c1) and these electrons propagate at r ≈ 375R₀, 500R0 bv

GANANAM (गणनम्)

HIGH PERFORMANCE COMPUTING NEWSLETTER **INSTITUTE FOR PLASMA RESEARCH, INDIA**

Page No.

Generation of a nearly mono-energetic weakly relativistic electron beam from laser-cluster interaction with an ambient magnetic field

Kalyani Swain (PhD Student, Basic Theory and Simulation Division, IPR) Email: kalyani.swain@ipr.res.in

aligning themselves more towards the magnetic-field direction z like a narrow cone. This demonstrates that the ambient magnetic field near ECR or RECR probes the ejected electrons to form a narrow conical beam avrating about the z axis as well as propagating in the z direction in the position space like a spiral.

Position coordinates (r, θ_r) of electrons are important to know how far these electrons have been transported as a beam and at what orientation. However, momentum coordinates (p, $\boldsymbol{\theta}_{p})$ is often more physically relevant to determine the transport properties of electrons and the kind of magnetic configuration required to transport these electrons as a beam. θ_p can also be calculated in a similar way like θ_r from $\mathbf{p}_z = \mathbf{p} \cos \theta_p$ and $\mathbf{p}_\perp = \mathbf{p} \sin \theta_p$, where $\mathbf{p}_\perp = \sqrt{\mathbf{p}_z^2 + \mathbf{p}_z^2}$. From the histograms of electrons and respecfrom $p_z =$ tive polar plots with their normalized momentum p/c vs θ_p (results are not shown here; see the details in [2]) corre-sponding to those energy spectra in (point B, C) Fig.2 shows that the momentum of beam electrons reaches weakly relativistic values $p = \sqrt{\mathbf{p}_{\perp}^2 + \mathbf{p}_{\nu}^2} \approx 0.875c, 1.25c$ for $B_0=0.057, 0.07$. All electrons gyrate around the surface of the cone with wide opening angle at an angular spread of $\Delta \theta_p < 5^\circ$ which spirally propagate in the z direction with increasing energy [2] Furthermore, with increasing cluster size from 2.2nm to

3.3nm and 4.4nm, the electron beam becomes more intense with greater number of energetic electrons. Note that, a higher intensity I_0 =1.83×10¹⁷ W/cm² is required while considering the bigger clusters to ensure 100% outerionisation of the cluster electrons. In Fig.4 we show the polar plots of the normalized position r/R_0 vs θ_r for the electrons corresponding to B0 = 0.057,0.078 (column wise) for the above mentioned cluster sizes. The angular spread (Δθr~3°) with narrow opening angle along z-direction is the same for all cluster sizes.

The PIC simulation results show a close matching with RSM results (a detail explanation is given in Ref.[2]). Here, we use an in-house developed 3D electrostatic PIC code [3] which is upgraded to hybrid-PIC [2] for this particular work. This serial code takes ~35 mins for the smaller cluster size (2.2 nm) for single value of B0 in one CPU node of ANTYA-HPC facility at IPR. However, for bigger cluster sizes (3.3nm and 4.4nm) the run time is nearly 4.5hours. Also, to generate Fig.1 we need to scan ~ 50-60 B0 values and the corresponding time data of individual particles for all other Figures. Through message passing interface (MPI)

GANANAM

Profiling 2D matrix multiplication code: Comparison Study between Serial and Parallel approach using Intel VTune Profiler

Intel VTune Profiler can be used for profiling codes written in C/C++ and Fortran languages. The performance statistics data collected from the profiler can enable users to identify and fix performance issues quickly, reducing development time and improving overall code performance and system efficiency. For more details, you may visit the Intel VTune Official Documentation here. Steps to configure Intel VTune Profiler on ANTYA can be found in *GANANAM* Issue 28 here.

This article focuses on analysing the programming approach's influence on matrix multiplication performance, a fundamental mathematical operation with widespread applications in computational sciences. For this comparative study, we have selected a matrix multiplication of size 512*512 written in the C language with both serial and parallel programming approaches. All source and output files are accessible on GitHub here.

There are several analysis areas included with Intel VTune, including parallelism, micro-architecture, algorithms, and platform analysis. Parallelism and algorithms, which deal with threading, hotspot analysis, and memory usage, are the two most often utilized analysis categories. Threading and memory usage analysis are employed in the comparison study.

Case 1: Threading analysis using VTune Profiler

The comparative analysis indicated that by distributing the jobs, the parallel programming strategy reduced the elapsed time by 65% and increased the effective CPU utilisation to 10% from 2.5%.

Case 2: Memory Consumption Analysis using VTune Profiler

According to the comparison study, the parallel programming approach uses around ten times more memory than the serial approach. The cause is the generation of new threads or processes.

lysis Configuration Co	llection Log	Summary Bottom-up			
Elapsed Time [®] : Allocation Size: Deallocation Size: Allocations: Total Thread Count: Paused Time [®] : Top Memory-Com	0.935s 4.1 KB - 40 undefined - 32	• 0.278s = 0.657s 6 KB = -36.5 KB .8 KB = -36.8 KB 2 - 15 = -13 1 - 8 = -7 Not changed, 0s Inctions	User may cli the top mem ing function analysis.	ck on any of ory consum- to get in depth	
Function [Outside any loop] [Unknown] [Loop@0x183c0 in func@4	9x18380] u it_internal] u	Memory Consumption 4.1 KB - 7.6 KB = -3.5 KB Not changed, undefined ndefined - 128.0 B = -128.0 B ndefined - 32.8 KB = -32.8 KB	Allocation/Deallocation Delta 4.1 KB - 7.6 KB = -3.5 KB Not changed, undefined undefined - 128.0 B = -128.0 B undefined - 0.0 B = 0.0 B	Allocations 1 - 5 = -4 1 - 8 = -7 undefined - 1 = -1 undefined - 1 = -1 ld-	Module [Unknow [Unknow libgomp.so linux-x86-64.so
[Loop@0xfab8 in _dl_in:					

ANTYA UPDATES AND NEWS

1. New Packages/Applications Installed

Modules list remains the same for this month. To check the list of available modules: \$ module avail -I

HPC PICTURE OF THE MONTH

Pic Credit: Gopal Mailapalli

Ion Temperature Gradient (ITG) modes are drift type modes driven unstable if the gradient in temperature is more than the gradient in plasma density in Tokamaks. The phase velocity of the mode is in the ion diamagnetic direction, which is counterclockwise in the figure, which shows 2D eigenmode structures of an ITG mode. The streaks (sharp features) as shown in the inset plot indicates the effect of kinetic or non-adiabatic electrons.

The plot is generated using Global Gyrokinetic -PIC code ORB5 in collaboration with EPFL, Switzerland. This simulation is run for a grid resolution of 512 x 512 x 256, with 640 Million gyrokinetic ions and drift kinetic electrons each, which took 6 days on 1024 cores (32 nodes x 32 cores per node). The geometry and equilibrium considered in the simulation, closely resembles the DIII-D tokamak and the cross-section is taken at toroidal angle zero.

TIP OF THE MONTH

The latest version of MATLAB-2023b (Update 4) has been installed on the Visualization node of ANTYA Cluster. For usage, a user has to load this MATLAB module by using the following command.

[user@visualization ~]\$ module load MATLAB/2023bu4

GANANAM

ANTYA Utilization: NOVEMBER 2023

ANTYA Daily Observed Workload

Other Recent Work on HPC (Available in IPR Library)

Optimization of Tritium Losses Due to Ion Beam Interaction for DT Neutron Production by Binary Collision Approximation Method	Varun Vijay Savadi	ANTYA HPC USERS'
First operation of LLMHD loop with electromagnet for R & D MHD experiments	Anita Patel	NOVEMBER 2023
Fully kinetic electrostatic Particle in Cell simulations using open-source 3D solver for space thruster application	Sneha Gupta	◆Total Successful Jobs~ 1867
Magnetic Island Coalescence Driven Reconnection and Role of Shear flows	Jagannath Maha- patra	◆Top Users (Cumulative Resources)
Effect of Electrons and lons Mobility on Edge Biasing in Toka- mak Plasmas	Vijay Shankar	CPU Cores Amit Singh
Physics and Engineering Considerations for Compact Fusion Pilot Plants	Shishir Deshpande	ODU OL I Chickie Biewee
Beam driven electromagnetic instability in high temperature plasma	Anjan Kumar Paul	• GPU Cards Shishir Biswas
Study of ELMs in presence of Stably Operating Coherent Modes	Kaushalkumar Parikha	Walltime Vinod Saini
Excitation of fore wake structures in a flowing dusty plasma	Krishan Kumar	
Inverse Cascade in a 3D Stably Stratified 3D Yukawa Liquid Subjected Plane Couette Flow	Suruj Jyoti Kalita	• Jobs Jugal Chowdhury
Roration/Spin of Plasma BLOB in Edge AND Scrape off Layer Regions	Nirmal K. Bisai	

Acknowledgement

The HPC Team, Computer Division IPR, would like to thank all Contributors for the current issue of GANANAM.

On Demand Online Tutorial Session on HPC Environment for New Users Available Please send your request to hpcteam@ipr.res.in. Join the HPC Users Community hpcusers@ipr.res.in If you wish to contribute an article in GANANAM, please write to us. Contact us

HPC Team Computer Division, IPR Email: *hpcteam@ipr.res.in*

Disclaimer: "GANAVAW" is IPR's informal HPC Newsletter to disseminate technical HPC related work performed at IPR from time to time. Responsibility for the correctness of the Scientific Contents including the statements and cited resources lies solely with the Contributors.