Clusters are finite aggregates of atoms/molecules (few to several thousands) bound together via Van der Waals forces. Under specific conditions of pressure and temperature, their size may vary from sub-nanometer to a few tens of nanometers [1]. Clusters serve as an intermediate state between solid and gas since their average atomic density is typically of the order of the gas density while its local atomic density is close to the solid density. The localized solid-like atomic density of a cluster and its smaller size (of a few nanometers) than the wavelength of 800 nm laser pulse (typically used in experiments) allow full penetration of laser field without attenuation [Figure 1(a)], contrary to micron-sized solids, leading to nearly 90% laser absorptions in clusters [2]. Thus an atomic cluster acts as a unique target for high-energy particle generation. As a cluster is irradiated by a laser, constituent atoms are ionized (called inner ionization) and a nano-plasma is formed. Subsequently, laser absorption by electrons and removal of those hot electrons from the transient cluster potential (called outer ionization) creates a local electrostatic field which, when added to the laser field, may create even higher charge states. Subsequent outer ionization of electrons leaves the cluster with a net positive charge which explodes due to inter-ionic Coulomb repulsion (cluster expansion) [Figure 1(b)]. Clusters irradiated with strong laser pulses can serve as efficient table-top radiation sources of x-rays, energetic KeV electrons, MeV ions and MeV neutrals. High neutron yield also has been found from fusion reactions in deuterium clusters. Electrons and ions from laser irradiated clusters can be used in biological imaging as well as proton beam therapy for cancer treatment. Therefore, the interaction of laser with atomic cluster has been the topic of considerable interest since the early nineties.

Coulasing of laser energy to cluster electrons can happen through collisional and collisionless processes. However, the collisional process of absorption becomes inefficient for infrared lasers with intensities $I \approx 10^{14}$ W/cm2 and can be neglected as it scales as $\sim 1/(\omega^3)$. On the other hand, the collisionless resonance absorption mechanism includes both linear resonance (LR) and anharmonic resonance (AHR). Resonance absorption processes are frequency-dependent phenomena and depend on the system’s eigen frequency and the driver’s frequency. For the spherical cluster, LR happens when Mie-plasma frequency $(\omega_m=\omega/\sqrt{3})$ matches with the laser frequency (ω). LR occurs after a longer time (typically > 50fs) during the Coulomb expansion phase and many electrons collectively leave the cluster by absorbing a huge amount of laser energy. However, for very short infrared laser pulses of duration < 20fs, laser absorption by electrons mainly occur by AHR [3].

For the detailed understanding of different absorption mechanisms by electrons in a laser-driven atomic cluster, a 3-D molecular dynamics (3D-MD) code [4] with soft-core Coulomb interaction among the charged particles has been developed from scratch. Using this newly developed 3D-MD code in HPC clusters of IPR (UDAY and ANTYA) we study the dynamical behavior of deuterium and argon clusters irradiated by different peak intensities at different laser wavelengths. We identify anharmonic resonance absorption (AHR) mechanism as a universal dominant collisionless mechanism of absorption in the short pulse regime or in the early time of longer pulses in an over-dense pre-ionized deuterium cluster using MD simulations and rigid sphere model (RSM). Figure 2 shows electrons undergoing AHR at different times in the energy versus frequency domain, obtained by RSM and MD simulation. By analyzing trajectories of individuals and extracting their time dependent frequencies in the self-generated time-varying nonlinear plasma potential, we find that electrons become free from the cluster potential when the AHR condition is met i.e., when the dynamical frequency of an electron matches with the driving laser frequency. Again by performing RSM and MD simulations of an argon cluster, irradiated by short laser pulses we find out the optimal regime of laser wavelengths for an argon cluster to attain maximum absorption of laser energy at a given intensity and pulse energy [5]. Our results shown in figure 3 reveal that, for a given peak intensity and a plasma density, the efficient coupling of laser energy does not happen at the well-known linear resonance (LR) wavelength instead it happens at a red-shifted wavelength in the marginally over-dense regime of wavelength. This new finding in laser atomic cluster study may be useful to guide an optimum control experiment in the short-pulse regime where maximum energy is required to transfer from laser fields to charge particles and/or radia-

References:

"The current 3-D MD simulation code developed at IPR can be used in studying the dynamical behavior of Laser-Cluster Interactions."
Availing the Various Software Using the Environment Modules on ANTYA

Module is a Linux shell utility and allows to dynamically modify the user shell environment with the ability to reverse the changes by a single command using pre-defined module files. It helps in setting up the environment variables by just loading and unloading the modulefiles that one might traditionally do manually by exporting the commands either in bashrc or job scripts. HPC system ANTYA, having more than 10000 cores and 44 GPU cards, is serving as a shared platform for around 200 HPC Users where the users can run applications, both commercially licensed (ANSYS, COMSOL, CST, MATLAB, IDL) and open-source (LAMMPS, PLUTO, OpenFOAM, paraview, visit, etc.) as well as libraries and toolkits (intel, pgi, cuda, fftw, openmpi, gcc etc.). The number of installed software on ANTYA spans numerous applications from various domains in different versions and is installed at a shared location that is accessible to all the users. Modules facilitate the use of different versions of applications, libraries, and toolkits which enables the support of multiple package versions concurrently. The list of modulefiles of the applications is maintained by the HPC Team and updated regularly based on the user requests as well as system requirements.

Apart from using the applications installed at the shared location, Users can also install some specific applications in their home and can create custom module files for such specific applications. These custom module files can also be shared with your colleagues. The details about creating custom module files and sharing will be provided in the next issue. Following commands show how to use the existing modules on ANTYA:

1. Show the available software
 The following command is used to check what are software and their versions currently available on ANTYA:

   ```
   $ module avail
   ```

2. Show the available versions of a software
 The following command is used to check the python versions currently available on ANTYA:

   ```
   $ module avail python
   ```

3. Load the specific versions of a software from the available list
 The following command is used to load the python version 3.8.5:

   ```
   $ module load python385
   ```

4. Switch to other version of a software
 The following command is used to switch from the python version 3.8.5 to python version 3.7.1:

   ```
   $ module switch python385 python371
   ```

5. Show the Content of a modulefile and what changes it does in user shell environment
 The following command is used to show content of python version 3.7.1:

   ```
   $ module show python371
   ```

Other Recent Work on HPC (Available in IPR Library)

- Thermo-fluid MHD analysis of a Circular U-bend
 ANITA PATEL

- Performance assessment of a compact volumetric neutron source as breeder
 VINAY MENON

- Numerical Simulation Of A Bi-directional Plasma Thruster For Space Debris Removal
 VINOJ SAINI

- Collective excitations of rotating dusty plasma under quasilocalized charge approximation of strongly coupled systems
 PRINCE KUMAR

- RCS Reduction using Resistive-Ink based Metasurface Absorber
 PRIYANKA TIWARI

- Design, development and characterization of Broadband Polarization-Insensitive Metasurface Absorber using four \(T \)-shaped Resistive Arms for RCS reduction
 PRIYANKA TIWARI

- Emergence of directed motion in a 2D system of Yukawa particles on 1D asymmetric ratchet
 ANSHIKA CHUGH

- Design, Simulation, Fabrication and Testing of Linear Induction Motor for Electromagnetic Launchers (EML)
 PEDADA PRASADA RAO

- FEA Investigations of the Support Structures for the Magnet Test Facility
 MAHESH M GHATE

Acknowledgement

The HPC Team, Computer Division IPR, would like to thank all Contributors for current issue of **GAṈANAM**.

On Demand Online Tutorial Session on HPC Environment for New Users Available

Please send your request to
hpcteam@ipr.res.in

Join the HPC Users Community

hpccusers@ipr.res.in

If you wish to contribute an article in GAṈANAM, please write to us.

Contact us

HPC Team
Computer Division, IPR
Email: hpcteam@ipr.res.in

Disclaimer: “GAṈANAM” is IPR’s informal HPC Newsletter to disseminate technical HPC related work performed at IPR from time to time. Responsibility for the correctness of the Scientific Contents including the statements and cited resources lies solely with the Contributors.

ANTYA UPDATES AND NEWS

1. New Software Installed
 - petsc-3.14.0 module
 - visit-3.2.0 module
 - QGIS singularity container image now available

2. Phase-1 of firmware upgrade on compute nodes

Parallel Computing Workshop at IPR

Registration link

Last date to register 11th April 2021

Ion-Temperature Gradient (ITG) Driven Instability

(HPC Picture of the Month)

Pic Credit: Dr. Arkaprava Bokshi

The ITG mode driven turbulence is considered to be the primary mechanism for ion temperature loss in tokamak plasmas. The image shows the structure of the fluctuating ITG electrostatic potential in the poloidal plane.

Simulated on ANTYA using a gyrofluid model in open source code, BOUT++. Simulation took ~1 min on 128 cores.

Tip of the Month

```
$ qstat -f jobid
```

Institute for Plasma Research, India