

 1

Both the codes suggest with increasing workloads

the scaling performance improves. The PE problem

does not rely on communication between the pro-

cesses whereas in the HD problem the neighboring

values need to be communicated between the pro-

cesses (calculating derivatives). LF code starts with

initializing charged particle parameters and position-

velocity vectors and updating them as they are iterat-

ed over time along with evolving electric and mag-

netic fields. Using mpi4py, simulations of multiple

particles with different values and in different envi-

ronment settings (electric and magnetic fields) can

be done simultaneously by dividing particles among

the multiple processes as shown in Figure 3.

 This work was done in collaboration with Arka

Bokshi as part of an academic project with Students,

Deep Lad and Raj Patel from DDU.

References:

1. Deepak Aggarwal and Ankita Shingala, 2020 7th

International Conference on Computing for Sustaina-
ble Global Development (INDIACom), 2020, pp. 102-
107, doi: 10.23919/INDIACom49435.2020.9083729.

2. Christian Baun, Performance and Energy-Efficiency
Aspects of Clusters of Single Board Computers,
IJDPS Vol.7, No.2/3/4, July 2016.

3. Simon J. Cox et al., Iridis-pi: a low-cost, compact
demo. cluster, Cluster Com.,Vol.17, No.2, pp 349-358.

4. Deepak Aggarwal et al., "EduPar Posters," 2019 IEEE
International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), 2019, pp. 347-349, doi:
10.1109/IPDPSW.2019.00065.

5. Zhonghong Ou et al., Energy and Cost-Efficiency

Analysis of ARM-Based Clusters, 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp 115–123 (2012).

6. https://wiki.python.org/moin/ParallelProcessing.

S
cientific application development using parallel

programming which can run simultaneously on

multiple cores of a High Performance Compu-

ting (HPC) cluster is a difficult task. The nature of com-

plexity due to a large number of hardware and soft-

ware components in a cluster-based HPC system

makes it difficult to write applications/codes which can

interact with the system as a single unit and utilize the

parallel capabilities to get better performance. There is

a lack of expertise in writing efficient code, particularly

using parallel programming on such massively parallel

systems. Also, there are challenges in moving the

codes running on desktop/PC including the legacy

codes [1] directly to the HPC system which requires

building the code from scratch to utilize the capabilities

of the system. The HPC systems are ubiquitous yet

intangible to researchers for the development and

testing of a scientific application. With the advent of

small and highly affordable single-board computers, it

is possible to make an HPC like cluster environment

[2,3] by connecting several such boards. In an earlier

work [4], we have made a 4-node working cluster

named Pradyut (meaning “Light”) using Raspberry Pi

boards to demonstrate HPC like environment. Pradyut

with all its components housed in a portable acrylic box

is shown in Figure 1. This dedicated system can serve

as a low-cost and green testbed (<50W) [5] alternative

to an expensive large-scale

HPC system like ANTYA which

is very expensive and uses high

power (>150KW) for operation.

 In the case study presented

here, we have used Pradyut as

a testbed for developing and testing applications which

demonstrate the well-known behavior of parallel and

distributed computing (PDC) systems [2]. With Pradyut

being easy to maintain, it allowed us to do all experi-

ments with no restriction while developing the applica-

tions. The following 3 applications were developed in

Python for PDC demonstration:

- Pi_Estimation (PE): This code estimates the value of

Pi (π) using Monte Carlo method.

- Heat_Diffusion (HD): This code calculates the trans-

fer of heat from high temperature to low temperature

areas in a 2D plane using a 2D heat equation.

- Lorentz_Force (LF): The code demonstrate the mo-

tion of independent charged particles in electric and

magnetic fields.

 We started with legacy Fortran codes which ran

only on a single CPU core (serial). These codes

were first converted into Python. Even with friendly

syntax along with an enormous pool of free high-

quality libraries, Python is considered to be ineffi-

cient for multi-core architectures and does not per-

form as fast as lower-level languages like Fortran or

C/C++. This case study demonstrates how we have

used Python to overcome these challenges to run

the converted codes in Python efficiently on multiple

cores in both shared and distributed memory archi-

tectures. Many Python libraries exist for doing paral-

lel processing with differ-

ent approaches [6], like

Just In Time (JIT) Compi-

lation which is based on

numba, cython etc., sym-

metric multiprocessing

which uses multiprocessing, joblib, etc., and distrib-

uted computing using mpi4py, dask, etc for cluster

like environment. Since a majority of the HPC sys-

tems including ANTYA use Message Passing Inter-

face (MPI) standard library for developing codes that

can use thousands of cores simultaneously, we

have written the Python codes using MPI for Python

(mpi4py) library. This means we have the same

environment for the execution of codes on both

Pradyut and ANTYA. The only difference in the

execution of the codes was the use of the open-

source batch scheduler SLURM on Pradyut which

understandably will not impact the results.

 Figure 2 shows the scaling performance of PE and

HD applications obtained on Pradyut and ANTYA.

HIGH PERFORMANCE COMPUTING NEWSLETTER

J U N E 2 0 2 2 I S S U E 1 9

INSTITUTE FOR PLASMA RESEARCH, INDIA

INSIDE THIS ISSUE

From Testbed to Petascale:
A Case Study of Parallel Applications
Development

Deepak Aggarwal (SO-E, Computer Division, IPR)
Email: deepakagg@ipr.res.in

“A low cost testbed cluster can serve

as an efficient platform for parallel ap-

plication development before running

on big production petascale clusters”

GAṆANAM (गणनम्) (3 P a g e s)

Figure 3: Lorentz_Force application showing the mo-
tion of two charged particles in each subplot.

Topic
Page

No.

Research Highlight
From Testbed to Petascale:
A Case Study of Parallel Applications
Development

1

HPC Article Series
Running MATLAB Programs on ANTYA
Part-6: Checking MATLAB Licenses
Availability Including Toolboxes and
Accelerating MATLAB Code with GPU

2

ANTYA Updates and News
HPC Picture of the Month
Tip of the Month

2

ANTYA Utilization and User Job
Performance Ratio: May 2022

3

ANTYA HPC Users’ Statistics —
MAY

3

Other Recent Work on HPC
(Available in IPR Library)

3

Figure 1: Pradyut housed in a portable acrylic box
(30cm x 15cm x 15cm) has been used as a testbed
with theoretical performance capacity of less than
15 GFLOPS.

(a) (b)

Figure 2: Scaling Performance of (a) Pi_Estimation and (b) Heat_Diffusion applications on Pradyut and
ANTYA.

https://www.shabdkosh.com/dictionary/sanskrit-english/%E0%A4%97%E0%A4%A3%E0%A4%A8%E0%A4%AE%E0%A5%8D/%E0%A4%97%E0%A4%A3%E0%A4%A8%E0%A4%AE%E0%A5%8D-meaning-in-english

 2

Running MATLAB Programs on ANTYA
Part-6: Checking MATLAB Licenses Availability Including

Toolboxes and Accelerating MATLAB Code with GPU

I N S T I T U T E F O R P L A S M A R E S E A R C H , I N D I A

 J U N E 2 0 2 2 I S S U E 1 9

G AṆA N A M

The last article of the MATLAB series covers how a user can check the availability of
MATLAB licenses and run the MATLAB jobs accordingly in ANTYA. In the earlier is-
sue, it was demonstrated that a MATLAB code can be executed on multiple cores fast-
er. In this issue, it will be demonstrated that the performance can be improved by run-
ning the compute intensive codes on the powerful GPU cards (P100) available in
ANTYA.

How to Implement in ANTYA?

An example MATLAB problem that performs fast convolution on the columns of a ma-

trix has been taken for demonstration. The source code tested on ANTYA has been

taken from MATLAB website. The CPU and GPU versions have been executed on a

CPU node and GPU node (1 P100 GPU card) respectively.

 Generation of Magnetic
Flux Cigar for an Induction

Dynamo Model

Pic Credit: Shishir Biswas

The figure above shows the special kind of
structure which is known as cigar like mag-
netic field iso-surface structure for
an induction dynamo model, in a three di-
mensional magnetohydrodynamic plasma.
It is generated using In-house developed
multi-node multi-card weakly compressible
magnetohydrodynamic GPU based solv-

er GMHD3D.

For this simulation 256^3 grid resolution was
taken. The full simulation took 63.526 hours in
4xP100 GPU cards (2 Nodes) on ANTYA. For
generating this 3D Iso-surface visualiza-
tion, open source visualization package VisIt
3.1.2 installed in Antya Visualization node have
been used.

HPC PICTURE OF THE

MONTH

TIP OF THE MONTH

ANTYA has several versions of Open-
FOAM, open source code for CFD simu-

lation with parallel capabilities. The
available versions can be checked with

the command:

AN T Y A U P D ATE S AN D

N EW S

1. New Packages/Applications
Installed

 The no. of Applications
stays the same for this
issue.

 ANTYA Users /home da-
ta monthly backed up
cycle completed.

“MATLAB licenses including toolboxes along

with the users holding the licenses can be

checked from the following url:

http://licensewatch.ipr.res.in/lwm/”

“MATLAB module available on ANTYA is GPU

compatible and GPU MATLAB codes can be

executed on ANTYA gpu nodes.”

“The url also provides details of the availa-

ble toolboxes, total n. of licenses in each

toolboxes, user details and historical us-

age pattern.”

“GPU Acceleration is optimum if the

MATLAB code is vectorized i.e. avoiding the

‘for loops’ in the code.”

CPU code: cpu.m
a = complex(randn(40960,1000),randn

(40960,1000)); % Data input

b = randn(16,1); % Filter input

c = fastConvolution(a,b); % Cal. output

% Measure CPU time

ctime = timeit(@()fastConvolution(a,b));

disp(['Execution time on CPU = ',num2str
(ctime)]);

fastConvolution.m
function y = fastConvolution

(data,filter)

m = size(data,1);
% Zero-pad filter to the length of data, and

transform

filter_f = fft(filter,m);
% Transform each column of the input

af = fft(data);
% Multiply each column by filter and compute

inverse transform

y = ifft(bsxfun(@times,af,filter_f));

end

Fast Convolution on the Columns of a Matrix

CPU Code GPU Code

GPU Code: gpu.m
a = complex(randn(40960,1000),randn

(40960,1000)); % Data input

b = randn(16,1); % Filter input

ga = gpuArray(a); % Move data to GPU

gb = gpuArray(b); % Move filter to GPU

gc = fastConvolution(ga, gb);%Cal. On GPU

% Measure GPU time

gtime = gputimeit(@()fastConvolution

(ga,gb));

disp(['Execution time on GPU =

',num2str(gtime)]);

fastConvolution.m
function y = fastConvolution

(data,filter)

m = size(data,1);
% Zero-pad filter to the length of data, and

transform

filter_f = fft(filter,m);
% Transform each column of the input

af = fft(data);
% Multiply each column by filter and compute

inverse transform

y = ifft(bsxfun(@times,af,filter_f));

end

Vectorized
code used upto
20 cores

On 1 GPU card
Vectorized code
used 5GB RAM

8.5 times
faster

[user@login1 ~]$ module avail

OpenF
OpenFoam OpenFOAM-2.1.1 OpenFOAM-plus Open-

FOAM-v2106 OpenFoam7.0 OpenFoam8.0

https://lost-contact.mit.edu/afs/inf.ed.ac.uk/group/teaching/matlab-help/R2016b/distcomp/measure-and-improve-gpu-performance.html

 3

 J U N E 2 0 2 2 I S S U E 1 9

G AṆA N A M

Join the HPC Users Community
hpcusers@ipr.res.in
If you wish to contribute an article in

GAṆANAM, please write to us.

Contact us
HPC Team

Computer Division, IPR
Email: hpcteam@ipr.res.in

I N S T I T U T E F O R P L A S M A R E S E A R C H , I N D I A

On Demand Online Tutorial Session on
HPC Environment for New Users Available

Please send your request to
hpcteam@ipr.res.in.

Disclaimer: “ GAṆANAM ” is IPR's informal HPC Newsletter to disseminate technical HPC related work performed at IPR from time to time. Responsibility for the correctness of the

Scientific Contents including the statements and cited resources lies solely with the Contributors.

Other Recent Work on HPC (Available in IPR Library)

प्लाज़्मा प्रयोगों के ललए अतिचालक चुम्बकों का
विकास: अद्यिन और योजना

SWATI ROY

Re-entrant phase separation in a collection of self

-propelled non-reciprocally aligning disks

SOUMEN

DE KARMAKAR

Design of New Target Handling System, Exten-

sion Chamber and Modifications to the Existing

Target Handling System of High Heat Flux Test

Facility

RAJAMANNAR

SWAMY KIDAMBI

Acknowledgement

The HPC Team, Computer Division IPR, would like to thank all
Contributors for the current issue of GAṆANAM.

 ANTYA Utilization and User Job Performance Ratio: May 2022

ANTYA HPC USERS’

STATISTICS—

MAY

Total Successful Jobs — 4367

Top Users (Cumulative Resources):

 CPU
Cores

Amit Singh

 GPU
Cards

Suruj Kalita

 Walltime Gayathri

 Jobs Arzoo Malwal

ANTYA Daily Observed Workload

Users’ Jobs Performance Ratio

The performance ratio (PR) is a quantitative measure of how well the allocated resources are being utilized. Ideally, PR should be 1. For ex-

ample, if a user has requested 100 cores for a job and all the 100 cores are being utilized throughout the execution, then the performance

ratio for this job/user would be 100/100 which is 1. Here the performance ratio is averaged over jobs submitted in a month by a user.

PR < 1: Job Underperforming (using less cores than requested/allocated). Users with 0.1<PR<0.8, should check their jobs regularly

and improve the resource allocation as per the PR values of their jobs which can be self calculated as explained above.

PR > 1: Job doing implicit multithreading

