High Heat Flux Test Facility (HHFTF) at IPR

High Heat Flux Test Facility (HHFTF) at IPR is one of the few test facilities in the world, designed to perform heat transfer experiments for water cooled components under intense heat load conditions. The facility uses a 200kW (45kV) electron beam as heat source. Pencil Beam (circular cylindrical beam) of electrons having Gaussian radial cross-section in the range $\sigma \approx 4-8$ mm can be rastered along pre-programmed rastering patterns at high frequency of 10kHz so as to generate desired uniform as well as non-uniform heat flux profiles over surface of the component being tested. The beam can be operated at full power either in pulsed mode (rise & fall time ~ 1ms) or in steadystate mode. High Pressure High Temperature Water Circulation System (HPHT-WCS) of HHFTF is capable of supplying coolant water to components at maximum flow parameters of 160C temperature (\pm 5% stability), 60bar pressure (\pm 1% stability) and 300 lpm flow rate (\pm 5% stability). D-shaped double walled vacuum chamber of volume ~ 5m3 having several diagnostic and vacuum pumping ports, is evacuated using combination of a turbo molecular pump and a cryo-sorption pump so as to generate controlled background operating pressure in the range of 10$^{-6}$ torr to 10$^{-4}$ torr. Vacuum chamber is designed to attenuate X-rays emitted during experiments within allowed safe limits. HHFTF is approved by AERB for radiation safety. HHFTF can be used for testing big sized vacuum compatible and water cooled components with heat receiving area of 1m x 1m and weighing up to 1 ton. The facility is routinely being used to perform thermal hydraulic heat transfer experiments on plasma facing components and test mock ups for incident heat flux of the order of 10MW/m2 under vacuum conditions.

High Heat flux testing of test mockups with 500 μm thick W coating on CuCrZr/ SS316/ RAFMS water cooled substrates. W coating maintained at \sim500C for 1000 thermal cycles of duration 30-45 sec ON time and 15-30 Sec OFF time.

High Heat Flux testing performed using HHFTF on Tungsten mono- blocks diffusion bonded to CuCrZr tube passing through its centre. Thermal cyclic testing of these test mock ups are successfully carried out for heat flux up to 20MW/m2.

Tungsten materials developed using powder metallurgy are subjected to thermal cyclic fatigue testing at energy density of \sim1MJ/m2 with pulse duration 20ms ON & 1000ms OFF. Beam with Gaussian cross-section is focused at centre of the 25mm diameter 5mm thick circular disc specimen made from three tungsten materials. Surface temp. monitored using Fast Pyrometer.

Heat Flux uniformity is successfully demonstrated using infrared imaging on castellated graphite block for 260 x 130 mm2. Heat flux uniformity is achieved within \pm5% at different power levels.
Data Acquisition & Control System for HHFTF

1. PXI based Real time data acquisition & control and PLC based sequential control provide automation of entire operation of HHFTF.
2. Effective user control with fast safety interlocks.
3. Real time control loop with loop time 20μs – 200μs for fast control and 10-100ms for slow control.
4. Total 112 channels for data acquisition & control.
5. Adjustable sampling rate from 90 S/s to 750 KS/s per channel.
6. Acquisition of different selected parameters, online display of selected channel and offline analysis facility.
7. User administration and Access control.
8. Comprehensive GUI for visualization.
9. Data storage in TDMS format for pre/post processing.

Probable Usage of HHFTF
(1) Experimental validation of the design and engineering of the water cooled components for heat transfer.
(2) Study of damage in various materials caused by intense surface heat loads.
(3) Study of thermal fatigue life time of single/multilayered structures at high temperature gradients.
(4) Development and study of technological processes such as high-speed brazing, vacuum casting of metals, heat treatment.

Potential Users of HHFTF
(1) Organizations working in the field fusion technologies for plasma facing components.
(2) Research organizations working in the field of heat transfer studies using high pressure high temperature water.
(3) Industries working for design, development and testing of vacuum compatible water cooled heat transfer components.