Seminar

Institute for Plasma Research

Title :	UV-VISIBLE Photodetection Properties of
	Pulsed Laser Deposited TiO ₂ and Nb:TiO ₂ Thin
	Films Grown on Si Substrate
Speaker:	Dr. Avijit Dewasi
	Indian Institute of Technology, Roorkee
Date :	3rd August 2020 (Monday)
Time :	03:30 PM
Venue :	Online - Join the talk:
	https://meet.ipr.res.in/Dr.AvijitDewasi_PDFTalk

Abstract :

The UV-Visible photoresponse of anatase TiO₂ and Nb-doped TiO₂ (Nb:TiO₂) thin film grown on *p*-type Si substrates (*p*-Si) will be presented systematically. TiO₂ thin film of different thicknesses (39-201 nm) were grown on pristine *p*-Si substrates to explore the influence of the TiO₂ film thickness on the antireflection, and photodetection properties of the *n*-TiO₂/*p*-Si heterojunction structure. The photoresponsivity of the *n*-TiO₂/*p*-Si heterostructure under ultraviolet (UV) and AM 1.5G solar simulated light was found to decrease with an increment of the thickness of the TiO₂ layer. TiO₂(55 nm)/*p*-Si heterostructure exhibited the best photoresponse under the illumination of both UV and solar irradiance with responsivity ~0.14 A/W and ~0.09 A/W at -5V bias, respectively.

To improve the photoresponse of the optimized n-TiO₂ (55 nm)/p-Si heterojunction diode, TiO₂ layer (55 nm) was deposited on the chemically etched pyramidal textured p-Si substrate. After tuning the chemical etching parameters, the minimum total reflectance of ~7.6% was achieved for textured-Si substrate in the wavelength range of 300-900 nm. The reflectance further dropped down to 6.5% when the TiO_2 layer was deposited on the top surface of the textured Si substrate. TiO_2 (55 nm)/Textured-Si heterostructure exhibited a better response under the illumination of both UV and solar irradiance with responsivity ~0.22 A/W and ~0.13 A/W at -2V bias, respectively. One of the reasons for lower photoresponse was the high resistivity of TiO_2 . To improve the conductivity, Nb doping was introduced in the TiO_2 thin film and deposited on *p*-Si substrates. A comparative study on the UV-Visible light detection properties of the optimized Nb:TiO₂ thin films for two different concentrations of Nb doping (3.1 and 4.2 at.%) with the undoped TiO_2 was explored further. Under illuminated condition, n-Nb:TiO₂/p-Si heterojunction with Nb doping concentration (4.2 at.%) in Nb:TiO₂ film showed better photoresponse with responsivity value (at -3V bias) 1.09 A/W and 1.60 A/W under solar simulated light and UV light, respectively. Moreover, the heterojunction photodiode exhibited fast photoresponse to both UV (rise time ~28 ms and fall time ~30 ms) and solar simulated light (rise time ~26 ms and fall time ~29 ms). The above findings enhanced our understanding about the fabrication of high-speed optoelectronic devices based on reverse-biased $n-Nb:TiO_2/p-Si$ heterojunctions.